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Algebra I: Chapter 3. Group Theory

3.1 Groups.

A group is a set G equipped with a binary operation mapping G × G → G. Such a
“product operation” carries each ordered pair (x, y) in the Cartesian product set G×G
to a group element which we write as x · y, or simply xy. The product operation is
required to have the following properties.

G.1 Associativity: (xy)z = x(yz) for all x, y, z ∈ G.

This insures that we can make sense of a product x1 · · · · ·xn involving several group
elements without inserting parentheses to indicate how elements are to be combined two
at a time. However, the order in which elements appear in a product is crucial! While it
is true that x(yz) = xyz = (xy)z, the product xyz can differ from xzy.

G.2 Unit element: There exists an element e ∈ G such that ex = x = xe for
all x ∈ G.

G.3 Inverses exist: For each x ∈ G there exists an element y ∈ G such that
xy = e = yx.

The inverse element y = y(x) in G.3 is called the multiplicative inverse of x, and is
generally denoted by x−1. The group G is said to be commutative or abelian if the
additional axiom

G.4 :wq Commutativity: xy = yx for all x, y ∈ G

is satisfied
Our first task is to show that the identity element and multiplicative inverses are

uniquely defined, as our notation suggests.

3.1.1 Lemma. In a group (G, · ) the unit e is unique, and so is x−1 for each x.

Proof: Suppose there is another element e′ ∈ G such that e′x = x = xe′ for all x ∈ G.
Taking x = e we get e′ = e′e = e as claimed. Next, let x ∈ G and suppose y, y′ are
elements such that xy′ = e = y′x, xy = e = yx. Then look at the product y′xy and
apply G.1+G.2 to get

y′ = y′e = y′(xy) = (y′x)y = ey = y

Thus y′ = y and every x has a unique inverse which we hereafter label x−1. �

3.1.2 Some Examples of Groups. We write |G| for the number of elements in G,
which could be ∞.

1. G = {e}. This is the trivial group with just one element e such that e·e = e.
Here e−1 = e and |G| = 1. Not very interesting. �

2. G = (Z,+). This is an infinite abelian group; integer addition (+) is the
group operation. The unit is e = 0, and the inverse of any element x ∈ Z is
its negative −x. �

3. G = (Zn,+), the integers (mod n) for some n ∈ N, with addition of congru-
ence classes

[x] + [y] = [x+ y] for all x, y ∈ Z

as the group operation. This is a finite abelian group with |G| = n. The
identity element is [0]; the inverse of [k] ∈ Zn is the congruence class [−k] =
[n− k]. �
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4. G = (Un, · ), the set of multiplicative units in Zn. Here we take multiplication

[k] · [ℓ] = [kℓ] as the group operation. Recall that Un can also be described
as

Un = { [k] : 0 < k < n and gcd(k, n) = 1 }

as explained in 2.5.15. You should also recall the discussion of Section 2.5,
where (Zn,+, · ) was defined, to see why the group axioms are satisfied. The
proofs are pretty obvious once you observe that the product of two units in
Zn is again a unit. The identity element in Un is e = [1]; finding multiplica-
tive inverses [k]−1 requires some computation: using the GCD Algorithm we
can find r, s ∈ Z such that rk + sn = 1 in Z. Modulo n we get [r]·[k] = [1]
so that [k]−1 = [r].

The group Un is abelian and finite, but its size φ(n) = |Un| varies er-
ratically as n increases. This cardinality can be computed by hand in each
case, but there is a general formula for φ(n) that depends on the prime fac-
torization of n. The function φ(n) is so important in number theory it has a
special name: the Euler phi function. �

We will resume our catalog of groups in a moment, but first some exercises you should
think about right now.

3.1.3 Exercise. In any group, verify directly from the axioms that

(a) (x−1)−1 = x for all x

(b) (xy)−1 = y−1x−1 for all x, y ∈ G. (Note the reversal here.) �

3.1.4 Exercise. Determine the units in Z14 and compute their inverses.
Hint: First check that in Zn the multiplicative inverse of [−1] = [n − 1] is itself; then
observe that [−k] = [−1] · [k]. This cuts in half the number of inverses you must compute.
For numbers this small you can find r, s such that rk + sn = 1 by hand. �

3.1.5 Exercise. If p > 1 is a prime, explain why |Up| = p− 1.
Note: This is one of the few cases in which φ(n) = |Un| is easy to calculate. �

3.1.6 Exercise. Decide which of the following systems are groups.

(a)G = (Z, · ), the integers with multiplication as the binary operation.

(b)G = (N, · ), the natural numbers in Z with multiplication as the binary oper-
ation.

(c)G = (N,+), the natural numbers in Z with addition as the binary operation.

(d)G = (R, · ), the real numbers with multiplication as the binary operation.

(e)G = (R×

+, · ), the positive real numbers x > 0 with multiplication as the
binary operation.

(f)G = (C×, · ), the nonzero complex numbers z 6= 0 with multiplication as the
binary operation.

(g) Zn with multiplication [k] · [ℓ] = [k · ℓ] as the binary operation.

(h)G = (Z×

9 , · ), the nonzero integers (mod 9) with multiplication [k] · [ℓ] = [kℓ]
as the binary operation.

(i) The group of units in Zn

Un = {[k] ∈ Zn : 1 ≤ j ≤ n and gcd(k, n) = 1}

with addition [k] + [ℓ] = [k + ℓ] as the binary operation.
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In each case, if G is not a group which group axiom(s) fail to hold? �

3.1.7 Examples of groups (continued).

5. Let G be any vector space V , equipped with vector addition as the binary
operation. The identity element for this group is the zero vector 0, and the
inverse of any element x ∈ V is its negative −x = (−1) · x

6. G = (Rn,+) is a group, being a vector space, but so is the subsetG′ = (Zn,+)
of vectors in Rn with integer coordinates: x = (x1, . . . , xn) such that xi ∈ Z

for 1 ≤ i ≤ n.

7. The set G = (C,+) of all complex numbers, equipped with complex addition
as the product operation, is a completely different abelian group.

8. The set G = (C×, · ) of nonzero complex numbers C× = {z ∈ C : z 6= 0+ i0},
equipped with multiplication as the product operation, is an abelian group.

9. The circle group G = (S1, · ) is the set of complex numbers that lie on the
unit circle, so |z| = 1. This is an abelian group when S1 is equipped with
complex multiplication as the product operation because |zw| = |z| |w|. �

The next few examples are so important they deserve extensive discussion, so we
consider them separately.

Matrix Groups. M(n,F) is the set of all n × n matrices with entries in some field of
scalars F = Q,R,C, or Zp where p > 1 is a prime. This is a vector space, and hence a
group under the usual (+) operation for matrices. The additive identity element is the
zero matrix, all of whose entries are 0. However, M(n,F) is not a group under the usual
matrix product operation A ·B

(A · B)ij =

n
∑

k=1

AikBkj for all 1 ≤ i, j ≤ n

Matrix multiply is associative, with A(BC) = (AB)C, and there is an identity element
such that IA = A = AI, namely the n × n identity matrix, with 1’s on the diagonal
and zeros elsewhere. But some matrices (those with det(A) = 0) have no multiplicative
inverse such that AA−1 = A−1A = I. Nevertheless, certain subsets of M(n,F) are groups
of great importance in geometry and physics. To define them we must recall two facts.

Theorem. An n× n matrix A has an inverse if and only if its determinant

is nonzero: detA 6= 0. Moreover, there is an explicit algorithm for computing

A−1 once we know detA.

Theorem. Determinants are multiplicative: det(AB) = det(A) · det(B) and

in particular detA−1 = 1/ det(A) if det(A) 6= 0.

3.1.8 Example (Matrix Groups). The set GL(n,F) of n× n matrices with nonzero
determinant, usually referred to as the n-dimensional general linear group over F, is
a group when equipped with matrix multiplication. The identity element is the n × n
identity matrix I, and the group inverse of any A is its matrix inverse A−1. If the field
of scalars F is infinite the group GL(n,F) is infinite; it is not commutative unless n = 1.

Other classical matrix groups are subgroups of GL(n,F). To mention just a few:

1. G = SL(n,F) is the special linear group consisting of all n×n matrices A
such that det(A) = 1.

2. G = O(n,F) is the orthogonal group consisting of all n × n matrices A
such that AtA = I, where At is the transpose matrix defined by (At)ij = Aji.
Then we automatically have AAt = I and At = A−1.
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G = SO(n,F) is the special orthogonal group consisting of all n× n
matrices A ∈ O(n,F) such that det A = 1, so that

(1) A ∈ SO(n,F) ⇔ A−1 = At and det(A) = 1

An orthogonal matrix A ∈ O(n,F) always has determinant det(A) = 1 or
det(A) = −1 because

1 = det(I) = det(AtA) = det(At) · det(A) = ( det(A))
2

and in any field F the only solutions of the equation z2 − 1 = 0 are z = ±1.

3. G = O(n) and SO(n). Important special cases arise when F = R. Then the
orthogonal group is generally written as O(n), with the “R” understood. It
is not hard to show that the action of A ∈ O(n) on vectors in Rn preserves
inner products and Euclidean distances between points

(Ax, Ay) = (x,y) and ‖Ax−Ay‖ = ‖x− y‖

when Rn is equipped with the usual inner product (x,y) =
∑n

i=1 xiyi and

Euclidean distance function ‖x − y‖ = (
∑n

i=1 |xi − yi|2)
1/2

. Lengths of
vectors are also preserved, with ‖Ax‖ = ‖x‖.

The (real) special orthogonal group SO(n) consists of all n× n real
matrices A ∈ O(n) with determinant = 1.

(2) A ∈ SO(n) ⇔ AAt = I (so A−1 = At) and det(A) = 1

As above, an orthogonal matrix A ∈ O(n) can only have determinant
det(A) = 1 or det(A) = −1.

In 3 dimensions the real orthogonal group splits into two pieces O(3) =
O+(3) ∪ O−(3) according to whether det A = ±1. The negative piece
O−(3) consists of orientation-reversing transformations and includes reflec-
tions across planes theough the origin; it is not a subgroup of O(3) because,
for one thing, it does not contain the identity I, which has determinant
+1. We will see below that O+(3) = SO(3) is a subgroup whose elements
correspond to the rotations Rℓ,θ, by any angle θ about any oriented axis ℓ
through the origin (Euler’s Theorem 3.1.16). Transformations in O+(3) are
all orientation-preserving.

4. The upper triangular group consists of all n× n matrices of the form

A =











a11 a12 . . . ann

0 a22 . . . a2n

...
...

0 . . . 0 ann











such that

{

detA = a11 · · · ann 6= 0
aij = 0 for below-diagonal entries

If all the diagonal entries are equal to 1 we get the group of strictly upper
triangular matrices.

5. The three-dimensional Heisenberg group of quantum mechanics consists
of all real 3 × 3 matrices of the form

(3) A =





1 x z
0 1 y
0 0 1



 with x, y, z ∈ R.
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It plays a cenrtral role in Quantum Mechanics.

Other matrix groups will be mentioned later. �

3.1.9 Exercise. In the last two examples above, verify that each set of matrices is
actually a group by checking that:

(a) The product of two such matrices has the same form.

(b) The inverse A−1 of any such matrix has the proper form.

Hint: Start with the Heisenberg group, which is easier. Recall Cramer’s formula for
computing A−1 in terms of subdeterminants. �

3.1.10 Exercise. Show that SL(2,R) is not commutative by producing two matrices
such that AB 6= BA. �

3.1.11 Exercise. Suppose H is a nonempty subset of GL(n,F) such that

(a) I ∈ H (b) A,B ∈ H ⇒ AB ∈ H (c) A ∈ H ⇒ A−1 ∈ H

Prove H is a group when equipped with matrix multiply as its product operation. �

Transformation Groups. Many important groups are made up of bijective maps
(transformations) T : X → X of some point set X . For example the n-dimensional group
of rigid motions M(n) on Euclidean space Rn consists of all bijections T : Rn → Rn

that preserve the usual Euclidean distance between points

‖x − y‖ = [
n

∑

i=1

|xi − yi|
2]

1/2

The natural “product” in such a group is composition of mappings (S ◦T )(x) = S(T (x)).
This operation has the virtue that composition of mappings is automatically an associa-

tive process because

(R ◦ (S ◦ T ))(x) = R(S(T (x))) = (R ◦ S)(Tx) = ((R ◦ S) ◦ T )(x) for all x ∈ X

This is important. For an abstract group – say one presented as an n×n “multiplication
table” – verifying associativity is by far the most tedious computational task, requiring
a check of n3 identities. Associativity of the group operation is automatic in a transfor-
mation group. Not all bijections T : Rn → Rn in M(n) are linear mappings, for instance
translations Ta(v) = v + a are rigid motions because

‖Ta(v) − Ta(v
′)‖ = ‖(v + a) − (v′ + a)‖ = ‖v − v′‖

but since Ta(0) = a 6= 0 they aren’t linear maps unless a = 0.
A transformation group G is a set of bijective mappings on some space X such

that G satisfies the Axioms (G.1) - (G.3) when equipped with composition product
(◦). Associativity is automatic, the identity map e = id

X
acts as a group identity, and

every bijective map T : X → X has a set-theoretic inverse T−1 : X → X such that
T ◦ T−1 = T−1 ◦ T = e as required in (G.3).

We will examine transformation groups in more detail in Chapter 4, but for the mo-
ment offer some comments on an important special case closely related to the matrix
groups mentioned above: transformations groups whose elements are linear operators on
some vector space.

Matrix Groups vs Linear Transformation Groups. There is a natural correspon-
dence between matrix spaceM(n,F) (equipped with matrix multiplication) and the space
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Hom(Fn) of all linear operators T : Fn → Fn on coordinate space (equipped with com-
position product). It is given by

(4) L : M(n,F) → Hom(Fn) LA(x) = A · x for all x ∈ Fn

Here we regard a vector x as an n× 1 matrix and A · x is the (n× n) · (n× 1) = (n× 1)
matrix product. Its basic properties, worked out in any linear algebra course, are

• L is a bijection: distinct matrices A go to distinct linear operators LA and for every
linear operator T : Fn → Fn there is a unique matrix A such that T = LA.

• L respects all algebraic operations

(5) LA+B = LA + LB Lλ·A = λ · LA (∀λ ∈ F) LA·B = LA ◦ LB

Within M(n,F) we have the matrix group GL(n,F) and various subgroups, equipped
with matrix multiply (·); each of these subgroups corresponds to a group of transforma-
tions in Hom(Fn), for instance the group GL(Fn) of invertible linear operators on Fn

equipped with composition product (◦). This is a transformation group. The group law
is automatically associative, and GL(Fn) contains an identity element e = idFn ; it is also
closed under formation of inverses in view of the following exercise.

3.1.12 Exercise. Let T : V → W be a bijective linear map between vector spaces.
Prove that the set-theoretic inverse map

T−1(w) = (the unique v ∈ V such that Tv = w) (w ∈W )

is a linear map from W to V .
Hint: T ◦ T−1 = id

W
and T−1 ◦ T = id

V
. �

It is a fundamental result in linear algebra that the correspondence L in (4) induces
a bijection between these two groups

L : (GL(n,F), · ) → (GL(Fn), ◦) ,

which by (5) intertwines the group operations.

3.1.12A Definition Two groups (G, · ) and (G′, ∗) are isomorphic if there exists a

bijection φ : G→ G′ that intertwines the group operations

φ(x · y) = φ(x) ∗ φ(y) for all x, y ∈ G

We write G ∼= G′ if such a map can be found. The inverse map φ−1 : G′ → G is also an

isomorphism.

Isomorphic groups have indistinguishable algebraic properties, and may be regarded as
different concrete models of the same underlying algebraic structure; the structures are
said to be “the same up to isomorphism.” The relation G ∼= G′ on the family of all
groups is easily seen to be an RST equivalence relation, and the possible groups really
correspond to the equivalence classes under (∼=).

Finding a suitable map φ : G → G′ is the tricky part in proving two groups are
isomorphic. If you want to prove that they are not isomorphic the best way to procede is
to show that one group has an algebraic property that the other does not. The preceding
discussion shows that (GL(n,F), · ) ∼= (GL(Fn), ◦) despite the very different nature of
their elements.

3.1.13 Example (The 2-Dimensional Rotation Group). The two-dimensional
rotation group Rot(2) consists of all rotations Rθ about the origin: Rθ rotates every
vector in R2 counterclockwise about 0 = (0, 0) by θ radians. In particular
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• The identity map of the plane I = Rθ=0 is the identity element in the group.

• R−θ = (rotation clockwise by θ radians) is the inverse of Rθ.

It should be geometrically obvious that

(6) Rθ1+θ2
= Rθ1

◦Rθ2
for all θ1, θ2 ∈ R and R−θ = R−1

θ

according to our interpretation of R−θ. Thus (Rot(2), ◦) is a transformation group. It
is also commutative (a property not shared by the rotation groups in higher dimensions
n ≥ 3.

Notice that Rθ = Rθ+2π = Rθ+2πk for any integer k, so the symbols Rθ and Rθ+2πk all
represent the same group operation. Only the value of θ (mod 2π) matters in determining
the geometric operation.

It is well known that every rotation Rθ is a linear operator on R2 and is represented
by a 2 × 2 matrix with real entries: if vectors x = (x1, x2) are regarded as 2 × 1 column
matrices we have

(7) Rθ

[

x1

x2

]

=

[

cos θ − sin θ
sin θ cos θ

]

·

[

x1

x2

]

for all x ∈ R2

The rotation matrix A(θ) appearing here is easily seen to lie in SO(2). In Exercises 3.1.14
and 3.1.14A we outline the steps needed to show that the matrices in (7) are are precisely
those in

SO(2) = {A : AtA = I and det, A = 1}

Thus when we identify operators Rθ with matrices A(θ) there is just one matrix A ∈
SO(2) for each distinct rotation operator, and composition of operators corresponds to
the usual multiplication of matrices. Therefore the geometric group of rotations Rot(2)
is in every respect equivalent to the group of real 2 × 2 matrices SO(2) – the groups are
isomorphic (SO(2), · ) ∼= (Rot(2), ◦) under the bijective correspondence φ : A → LA. It
will be quite useful to have at our disposal both ways of looking at the same group. We
will have a lot more to say about isomorphisms in Section 3.2. �

*3.1.13A Exercise. Explain why the linear operator

LA : R2 → R2 for A =

[

cos θ − sin θ
sin θ cos θ

]

has the geometric effect of rotating every vector x counterclockwise by θ radians, as
claimed in (7) �

*3.1.14 Exercise. For a real n × n matrix A show that the following conditions are
equivalent

(a) A ∈ O(n), so that AtA = I and AAt = I.

(b) The rows R1, . . . , Rn of A form an orthonormal basis with respect to the
usual Euclidean inner product (x,y) =

∑n
i=1 xiyi, on Rn, so that

(Ri, Rj) = 0 for i 6= j and ‖Ri‖
2 = (Ri, Ri) =

n
∑

i=1

x2
i = 1

(c) Likewise the columns in A are orthonormal.

(d)A preserves the standard inner product on Rn, so that (Ax, Ay) = (x,y),
and in particular distances between vectors

‖x− y‖ = [
n

∑

i=1

(xi − yi)
2 ]

1/2
=

√

(x − y , x − y )

are preserved, making LA a rigid motion on Rn.
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Hint: How are entries in the matrix products AtA and AAt related to inner products of
rows or columns? You might want to try it first for n = 2, 3. �

*3.1.14A Exercise. For a real 2 × 2 matrix A show that the following conditions are
equivalent.

(a) A ∈ SO(2) so that AtA = I, AAt = I, and det A = 1.

(b) There exist a, b ∈ R such that

A =

[

a b
−b a

]

with a2 + b2 = 1

(c) There exists a real θ ∈ R (not necessarily unique) such that

A =

[

cos θ − sin θ
sin θ cos θ

]

(d) The operator LA : R2 → R2 such that LA(x) = Ax (product of 2× 2 by 2× 1
matrix) is a rotation Rθ about the origin by some angle of θ radians.

Hint: Exercise 3.1.14 applies taking n = 2. �

The situation in three dimensions is similar but more subtle.

*3.1.15 Example (The 3-Dimensional Rotation Group). The set Rot(3) of ro-
tations Rℓ,θ, by any angle θ about any oriented axis ℓ through the origin, is a linear
transformation group under composition (◦). This is not completely obvious at the out-
set. For instance we may ask

Question: Given rotations Rℓ1,θ1
and Rℓ2,θ2

how do you find ℓ3 and θ3 (if
any) such that Rℓ1,θ1

◦Rℓ2,θ2
= Rℓ3,θ3

?

The following theorem of Euler (too much of a digression to prove here) shows that
SO(3) maps to the rotation group Rot(3) under the correspondence A 7→ LA so there is
an isomorphism (SO(3), · ) ∼= (Rot(3), ◦) between these groups.

3.1.16 Theorem (Euler’s Theorem). If A 6= I in SO(3), λ = 1 is the only real

eigenvalue and its eigenspace is one-dimensional. The linear operator LA : R3 → R3

given by LA(x) = Ax is a rotation Rℓ,θ by some angle θ about the axis ℓ = (the one-

dimensional λ = 1 eigenspace). The correspondence (4) is a bijection from SO(3) to the

group of rotations Rot(3), and is an isomorphism of groups.

That concludes our excursion into linear algebra for the time being.
Here are a few more important groups, some of which happen to be groups of trans-

formations.

3.1.17 Example (Ωn = nth Roots of Unity). Recall that every complex number
z 6= 0 can be written in polar form z = reiθ = (r cos θ)+ i(r sin θ) as shown in Figure 3.1.
Here r = |z| and θ is the angle variable (angle from positive x-axis to the ray from the
origin to z), in radians. An nth root of unity is any z such that zn = 1 (so zn − 1 = 0).
The identity |zw| = |z| · |w| forces z to lie on the unit circle |z| = 1 if zn = 1, and hence
have the form z = eiθ for some θ ∈ R. Then zn = einθ equals 1 ⇔ nθ is a whole multiple
of 2π radians, so the distinct nth roots of unity are {e2πik/n : 0 ≤ k ≤ n− 1} . These are
precisely the powers 1, ω, ω2, . . . , ωn−1 of the primitive nth root ω = e2πi/n, which makes
a counterclockwise angle of θ = 2π/n radians with the +x-axis.

The set of nth roots Ωn is a group under complex multiplication. In fact, 1 ∈ Ωn and
z, w ∈ Ωn ⇒ zn = 1, wn = 1 ⇒ (zw)n = znwn = 1, so Ωn contains the multiplicative
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Figure 3.1. Geometric meaning of the polar form z = reiθ of a complex number.
In (b) we show the locations of the complex nth roots of unity, which are the
powers 1, ω, ω2, . . . , ωn−1 of the primitive nth root ω = e2πi/n.

identity 1 and is closed under formation of products. As for inverses, we have

zn = 1 ⇒

(

1

z

)n

=
1

zn
= 1

so Ωn is closed under inversion and (Ωn, · ) is a group, a subgroup of the multiplicative
group (C×, · ) of nonzero complex numbers. Later on we will see that the multiplicative
group (Ωn, · ) is isomorphic to the familiar additive group (Zn,+). �

Permutation Groups Sn. Next we introduce the permutation groups Sn, fundamental
to all discussions of group theory. Here we provide a brief introduction; all of Chapter 5
will be devoted to further discussion of these groups.

3.1.18 Example (Permutation Groups I). The permutation group Sn is the col-
lection of all bijective maps σ : X → X of the set X = {1, 2, . . . , n}, with composition of
maps (◦) as the group operation. Our previous comments about composition show that
(Sn, ◦) is a group. The identity element is the identity map on X, e = id

X
, and the in-

verse of any σ is the set-theoretic inverse map σ−1 that undoes the action of σ. It is easily
seen that Sn is finite, with |Sn| = n! = (n)(n − 1) · · · (3)(2)(1). It is non-commutative
except when n = 2.

One (cumbersome) way to describe elements σ ∈ Sn employs a data array to show
where each k ∈ X ends up:

σ =

(

1 2 . . . k . . . n
i1 i2 . . . ik . . . in

)

where (i1, i2, . . . , in) is some ordered listing of the integers 1 ≤ k ≤ n. In this notation
the identity element is

e =

(

1 2 . . . k . . . n
1 2 . . . k . . . n

)

More efficient notation is afforded by the fact that every σ can be uniquely written as a
product of “elementary permutations” called cycles. We describe the notation for cycles
here, so you will be able to handle meaningful examples; later on in Chapter 5 we will
deal with the cycle decomposition of arbitrary permutations.
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3.1.19 Definition. For k > 1, a k-cycle is a permutation σ = (i1, . . . , ik) that acts on

X in the following way

(8) σ maps

{

i1 → i2 → . . .→ ik → i1 (a cyclic shift of list entries)
j → j for all j not in the list {i1, . . . , ik}

The action of σ depends on the particular order of the list entries i1, . . . , ik.

For example,

The cycle σ = (123) in S5 maps 1 → 2 → 3 → 1 ; 4 → 4 ; 5 → 5

The cycle σ = (12) in S5 maps 1 → 2 → 1 ; 3 → 3 ; 4 → 4 ; 5 → 5

One-cycles (k) are redundant; every one-cycle corresponds to the identity map id
X

. We
seldom write one-cycles explicitly, though it is permissible and sometimes useful. For
instance the cycle (123) in S5 could also be written as the product of cycles (123)(4)(5)
because (4) = (5) = id

X
.

The symbol σ = (i1, . . . , ik) denoting a cycle is ambiguous. If we make a cyclic shift
of list entries we get k different symbols that describe the same mapping of X .

(i1, . . . , ik) = (i2, . . . , ik, i1) = (i3, . . . , ik, i1, i2) = . . . = (ik, i1, . . . , ik−1)

For instance (123) = (231) = (312) all specify the same operation 1 → 2 → 3 → 1 in X .
If we mess up the “cyclic order” of the entries we do not get the same element in Sn.
Thus

(123) 6= (132) because no cyclic shift of entries can make these symbols match

Indeed (123) 6= (132) as operators on X because the first operator sends 1 → 2 while
the second sends 1 → 3. The notational ambiguity regarding cycles can be somewhat
confusing, but the cycle concept is so useful that you will simply have to live with it.

Next you must understand how to evaluate the product στ = σ ◦ τ of two cycles.
Since the product is composition of maps, the action of the product on an element k ∈ X
can be evaluated by feeding k into the product from the right, as shown below taking
σ = (12) and τ = (123) in S5.

στ : k
(123)
−→ (123) · k

(12)
−→ (12)((123) · k) = (12)(123) · k

(Warning: Not all authors adhere to this standard convention!) To determine the net
effect of στ , start by examining the fate of k = 1, then look at what happens to the
image of 1, etc.

Action Net Effect

1
(123)
−→ 2

(12)
−→ 1 1 → 1

2
(123)
−→ 3

(12)
−→ 3 2 → 3

3
(123)
−→ 1

(12)
−→ 2 3 → 2

4
(123)
−→ 4

(12)
−→ 4 4 → 4

5
(123)
−→ 5

(12)
−→ 5 5 → 5

Examining the right hand column we see that the net effect of στ is to switch 2 ↔ 3,
leaving all other k where they were. Thus

(12)(123) = (1)(23)(4)(5) = (23) in S5

By a similar tracing of outcomes you can verify that
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(123)(14) = (1423)(5) = (1423) in S5

and so on. We exit our discussion of Sn with some exercises along these lines. �

3.1.20 Exercise. Evaluate the net action of the following products of cycles

(a) (12)(13) in S3 (c) (12)(12345) in S5 (e) (12)2 in S5

(b) (12)(13) in S5 (d) (12345)(12) in S5 (f) (123)2 in S5

(g) (15)(14)(13)(12) in S5 �

*3.1.21 Exercise. Given two cycles σ = (i1, . . . , ik), τ = (j1, . . . , js) in Sn, explain why

(a) σk = id
X

and τs = id
X

(b) στ = τσ (the operators commute) if their entries are disjoint in the sense
that {i1, . . . , ik} ∩ {j1, . . . , js} = ∅.

Note: Disjoint cycles always commute! However, if entries overlap the cycles may fail to
commute, as in the previous examples. �

3.1.22 Exercise. Determine the inverses σ−1 of the following elements in S5

(a) (12) (c) Any 2-cycle (i1, i2) with i1 6= i2
(b) (123) (d) Any k-cycle (i1, . . . , ik) with distinct ij �

3.1.22A Exercise. Prove that the product of 2-cycles (1, k)(1, k − 1) · · · (1, 3)(1, 2) is
equal to the k-cycle (1, 2, . . . , k).
Note: By relabeling 1 → i1, . . . , k → ik where i1, . . . , ik are distinct elements in {1, 2, . . . , n}
we see that a suitable product of 2-cycles yields an arbitrary k-cycle.

(i1, ik)(i1, ik−1) · . . . · (i1, i2) = (i1, . . . , ik)

This will be important later on. �

A Notational Interlude: Usually the operation in a group is written in multiplicative
form as x · y, but when G is commutative it is often preferrable to use additive notation,
writing the group operation as x + y. It is permissible, and often desirable, to use
multiplicative notation with commutative groups, but that would be really awkward in
some cases. You would encounter a lot of cognitive dissonance in discussing the group of
integers (Z,+) if we insisted on using some sort of multiplicative notation m ∗ n for the
group operation instead of m+n. On the other hand the group of units (Un, · ) in Zn, or
the nth roots of unity (Ωn, · ), should obviously be handled using multiplicative notation.
(The set of units isn’t even closed under the (+) operation in Zn, recall Exercise 3.1.6.)

When we do employ additive notation, various combinations of group elements must
be rewritten accordingly. For instance in additive notation the identity element is always
written as “0” rather than “e” and the additive inverse of an element is written −x
instead of x−1, so the characteristic property defining the inverse of an element in G
takes the form

x+ (−x) = 0 instead of x · x−1 = e

The additive kth power of an element x is then

k · x = x+ . . .+ x (k times) instead of xk = x · . . . · x

−k·x = (−x) + . . .+ (−x) (k times) instead of x−k = x−1 · . . . · x−1

for k > 0 and 0 ·x = 0
G

(the identity element in G) if k = 0. Here is a glossary for
translating between multiplicative and additive notation
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Glossary

Identity Inverse Product Powers

Multiplicative Notation (G, · ) e x−1 x · y xk = x · . . . · x

Additive Notation (G,+) 0 −x x+ y k · x = x+ . . .+ x

This dual notation may seem confusing at first, but it is so convenient and widely used
that you simply must get a handle on it. Notice that in the particular additive group
(Zn,+) all of the following expressions

k · [ℓ] = [ℓ] + . . .+ [ℓ] (k times) = [ℓ+ . . .+ ℓ] = [kℓ]

stand for the additive kth power of a typical element [ℓ] ∈ Zn.

Subgroups of a group G. We now examine some structural features of an abstract
group. A nonempty subset H in a group G is a subgroup if it has the properties

(9)

(i) H is closed under formation of products: H ·H ⊆ H , or
equivalently x, y ∈ H ⇒ xy ∈ H .

(ii) The identity element e lies in H .

(iii) H is closed under inverses: h ∈ H ⇒ h−1 ∈ H .

Then the product operation G×G→ G restricts to give a product operation H×H → H
and one easily verifies that (H, · ) satisfies the group axioms G.1 – G.3. For instance,
associativity of the induced operation in H follows immediately from associativity in the
larger set G. The trivial groupsH = (e) andH = G are subgroups; all other subgroups, if
any, are referred to as proper subgroups. The suggestive notation H ≤ G is sometimes
used to indicate that a subset H ⊆ G is actually a subgroup.

The pattern of subgroups is an important structural feature of any group, so it is
useful to understand how subgroups get “generated” by various nonempty subsets S of
elements in G. This idea, that every subset S generates a subgroup H = 〈S〉, is based on
the following easy theorem.

3.1.23 Exercise. Given any family {Hα : α ∈ I} of subgroups in a group G, prove that
their intersection

H =
⋂

α∈I

Hα = {x ∈ G : x ∈ Hα for all α ∈ I}

is also a subgroup, even if there are infinitely many Hα. �.

Given a nonempty subset S ⊆ G there is always some subgroup that contains S – for
example H = G itself. The intersection of all subgroups that contain S is again a
subgroup, by 3.1.23, and is evidently the smallest possible subgroup that contains S.

3.1.24 Definition. Let S be a nonempty subset of a group G. The intersection

(10) 〈S〉 =
⋂

{H : H is a subgroup and H ⊇ S }

is a subgroup. It is called the subgroup generated by S, and the elements of S are

referred to as “generators” of this group.

Different subsets might generate the same subgroup.
The foregoing “top-down” definition is rather transcendental and abstract, making it

hard to wrap your mind around the concept of “generated subgroup.” Fortunately, an

12



alternative “bottom-up” description of 〈S〉 tells uususuusss how to build it up from the
elements in S. Starting from S, first form the set S ∪ S−1, which consists of elements
of S and their inverses. The sets S, S−1 and S ∪ S−1 generate the same subgroup in G
since G−1 = G.

*3.1.25 Exercise. Suppose S and S′ are nonempty subsets in a group G. Prove that

(a) S′ ⊆ S ⇒ 〈S′〉 ⊆ 〈S〉 .

(b) If S is already a subgroup, then 〈S〉 = S. To put it another way, doing 〈 · 〉
twice yields nothing new: 〈〈S〉〉 = 〈S〉.

(c) The sets S, S−1 = {s−1 : s ∈ S}, and S ∪ S−1 each generate the same
subgroup in G. �

So, passing from S to S ∪ S−1 we procede to form the set of all words of finite length

whose entries are either an element of S or the inverse of such an element:

(11)
The set of “finite length words” WS is defined to be the set of all products
a1 · · ·ar such that r <∞ and ai ∈ S ∪ S−1

The set of symbols S ∪ S−1 is the “alphabet” from which words are constructed. It is
crucial to realize that this set of “words” is precisely the subgroup generated by S, and
this is the “bottom-up” interpretation of 〈S〉. We leave the verification to the reader.

*3.1.26 Exercise. Verify that WS is indeed a subgroup of G, and that

(12) 〈S〉 = WS = { a1 · · ·ar : r <∞ and ai ∈ S ∪ S−1 }

for any nonempty set S ⊆ G.
Hint: Why is the identity e in the set WS? If x ∈WS why is x−1 in WS? �

3.1.27 Exercise. Do we always get a subgroup if we form the set

ES = { a1 · · ·ar : r <∞ and ai ∈ S } (no negative powers)?

Prove or give a counterexample.
Hint: Try some subsets of G = (Z,+). �

3.1.28 Exercise. In G = (Z,+) consider the subsets

(i) A = N (ii) B = {2} (iii) C = {2, 3} (iv) D = {3, 21} (v) E = {3, 23}

Determine the subgroups they generate. �

3.1.29 Exercise. In G = (Z12,+), determine the subgroups generated by

(a) The additive identity element [0] (d) The single element y = [3]

(b) The multiplicative identity element [1] (e) The single element z = [5]

(c) The single element x = [2] (f) The two elements x = [5] and y = [3] �

*3.1.30 Exercise. Explain why every subgroup of (Z,+) has the form

H = mZ = {km : k ∈ Z}

for some m ≥ 0
Hint: The trivial subgroup 0 · Z = {0} is obtained if we take m = 0; setting aside this
special case we may assume H 6= {0}. Then H ∩ N is nonempty (why?), and there is a
smallest element m = min{H ∩ N} by the Minimum Principle. �

*3.1.30A Exercise. Let (G,+) be an abelian group described in additive notation,
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and let a, b ∈ G. Writing additive kth powers as k ·x, define the set of “integer linear
combinations”

Z·a+ Z·b = {k·a+ ℓ·b : k, ℓ ∈ Z}

Prove that

(a) Z·a+ Z·b is a subgroup in (G,+).

(b) Z·a+ Z·b is precisely the group H = 〈a, b〉 generated by a, b.

Note: This helps in determining subgroups generated by elements of an abelian group.
If G is abelian and the group law is written in multiplicative form, the set Z ·a + Z ·b
becomes {akbℓ : k, ℓ ∈ Z}. �

*3.1.30B Exercise. In the additive group of integers (Z,+) determine the subgroups
H = 〈a, b〉 generated by

(a) a = 18 and b = 21 (b) a = 18 and b = 32 (c) a = 18, b = 32, and c = 14 �

Hint: Use the result of Exercise 3.1.30A and recall that gcd(a, b) = the smallest positive
element in the lattice Λ = Za+ Zb.

Given a subset S in G, determining the generated subgroup can be a vexing task.
However, a complete analysis is possible in one very important case: when S consists of
a single point a and the generated subgroup is H = 〈a〉. Subgroups generated by a single
element are called cyclic subgroups. A cyclic subgroup can have various generators,
so that H = 〈a〉 = 〈b〉 with a 6= b. The case when a = e is of no interest since 〈e〉 is the
trivial subgroup.

Our analysis of cyclic subgroups requires some basic facts about powers ak of a
group element. Proof from the axioms is quite straightforward, but involves an annoying
number of cases, so we simply state the result and leave the proof to you.

3.1.31 Theorem (The Exponent Laws). Let (G, · ) be a group. For any element

a ∈ G and any k ∈ N define

ak = a · . . . · a (k times)

a0 = e (the identity element)

a−k = (a−1) · . . . · (a−1) (k times)

Then the following exponent laws are valid for all m,n ∈ Z.

(a) am · an = am+n

(b) (am)−1 = (a−1)m

(c) (am)n = amn

If G is abelian we also have

(d) If G is abelian we also have (ab)n = an · bn.

The case m,n > 0 involves straightforward counting. For the rest use the fact that, by
definition, a−k = (a−1)k when k > 0 and a0 = e.

*3.1.32. Suppose G is abelian and the group law is written in additive form (G,+).
Rewrite the Exponent Laws 3.1.31 in additive notation.
Note: You will find that the Exponent Laws written in this form recapitulate several of
the rules in Axiom Set I in the definition of Z. �
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It follows immediately from the Exponent Laws that the subgroup generated by a sin-
gle element a ∈ G is precisely the set H = {ak : k ∈ Z} of all positive and negative powers
of a. But it is important to notice that the list . . . a−2, a−1, a0 = e, a1 = a, a2, a3, . . .
whose elements make up H may include repeats – i.e. we might have ai = aj with i 6= j
in Z. Although there are infinitely many possible powers ak, one for each integer, the
set H of distinct powers could be (and often is) finite if the list has repeats. You must
distinguish between the infinite list of powers and the set of distinct items in that list.

3.1.33 Exercise. If G is a group and a ∈ G, prove from the definition of “generated
subgroup” that 〈a〉 coincides with the set of powers H = {ak : k ∈ Z}.
Note: This is true whether or not there are repeats among the powers ak. �

To determine H more precisely we examine the behavior of the sequence of non-
negative powers S′ = {e, a, a2, a3, . . .}, where e = a0 and a = a1. There are two cases to
consider.

Case 1: There are no repeats in S′. Then the larger sequence {ak : k ∈ Z}
consisting of all powers contains no repeats. In fact, if a repeat occurred there would
be integers ℓ < k in Z such that ak = aℓ. By the exponent laws ak = ak−ℓ · aℓ = aℓ.
Multiplying both sides on the right by a−ℓ we get ak−ℓ = e; but 0 < k − ℓ < k contrary
to our hypothesis that the list of positive powers contains no repeats.

In Case 1 all the ak are distinct and the subgroup H is an infinite group, which must
be abelian since ak · aℓ = ak+ℓ = aℓ · ak by the exponent laws. Furthermore there is a
natural bijection φ : k 7→ ak between (Z,+) and (H, · ) which has the interesting property
that it intertwines the group operations

φ(k + ℓ) = φ(k) · φ(ℓ) (because ak+ℓ = ak · aℓ)

Intuitively, that means (H, · ) ∼= (Z,+) and H is simply a copy of (Z,+) embedded within
the abstract group G. (More on this later.)

Case 2: There is a repeat in the set S′. A trivial possibility is that a0 = a1; then
a = e and H = 〈a〉 reduces to the trivial subgroup H = (e). Otherwise, a repeat will
occur because there are integers 0 ≤ ℓ < k such that aℓ = ak.

We claim that

Let k be the smallest index k > 0 for which a repeat occurs. Then ak = e, so

the first repeat cannot occur because ak is equal to some intermediate power

aℓ with 0 < ℓ < k.

If the repeat involved an intermediate power we would have aℓ = ak for some 0 < ℓ < k.
Then aℓ = ak = ak−ℓ · aℓ, and we may multiply on the right by (aℓ)−1 = a−ℓ to get
ak−ℓ = e. That is impossible because k − ℓ > 0 is smaller than the minimal exponent k.

In Case 2 the generated subgroup is H = {e, a, a2, . . . , ak−1}, with ak = e. [ In fact
H is a subgroup because (i) e ∈ H ; (ii) aiaj = ai+j ∈ H if i+ j < k, and otherwise we
have

ai+j = ai+j−kak = ai+j−k ∈ H (because i+ j < 2k ⇒ i+ j − k < k) ;

(iii) Finally we have (ai)−1 = ak−i ∈ H because 0 ≤ k − i < k.] The elements
e, a, a2, . . . , ak−1 are distinct, the subgroup is finite with |H | = k, and H is abelian
(combine the Exponent Laws with the fact that ak = e). Note that the set of positive
powers e, a, a2, . . . , ak−1 picks up all the negative powers automatically when o(a) <∞,
for instance. a−1 = ak−1, a−2 = ak−2, . . .

In this situation we have a well-defined map φ : Zk → H given by φ([j]) = aj for each
congruence class [j] in Zk. This is a well defined map of congruence classes [j] because

aj+nk = aj(ak)
n
k = aj ·e = aj for all n ∈ Z
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The value of aj depends only on the (mod k) congruence class of j in Z and not on j
itself. In view of the following exercise, H = 〈a〉 is just an isomorphic copy of the finite
group (Zk,+) embedded in G. Note that (Zk,+) is itself a cyclic group, generated by
the element [1]. (There might be other cyclic generators of Zk, see 3.1.37 below.)

3.1.34 Exercise. Prove that the map φ : Zk → H defined above is actually a bijection,
and has the intertwining property

φ([m] + [n]) = φ([m]) · φ([n]) for all [m], [n] ∈ Zk.

Therefore φ is an isomorphism between the groups (Zn,+) and (H, · ).
Hint: Exponent laws. �

3.1.35 Definition. Let (G, · ) be a group. The order o(a) of a group element a ∈ G
is the smallest positive exponent k > 0 such that ak = e. If no such exponent exists the

group element is said to have infinite order, which we indicate by writing o(a) = ∞.

For example, every element a 6= 0 in (Z,+) has infinite order; on the other hand, if G
is a finite group every element a ∈ G has finite order since o(a) ≤ |G|. By definition
o(a) ≥ 1, and we have o(a) = 1 ⇔ a = e.

The preceeding discussion is summarized in the following theorem.

3.1.36 Theorem (Structure of Cyclic Subgroups). Let (G, · ) be a group. A cyclic

subgroup has the form H = 〈a〉 = {ak : k ∈ Z} for some a ∈ G. There are two

possibilities, which depend on the order o(a) of the generator.

(a) o(a) = ∞. Then all powers ak, k ∈ Z, are distinct and H is a copy of the

infinite abelian group (Z,+) embedded in the abstract group G.

(b) o(a) = k <∞. Then H consists of the distinct elements {e, a, a2, . . . , ak−1},
with ak = e. In this case H is a copy of the finite abelian group (Zk,+)
embedded in the abstract group G.

3.1.37 Exercise. The element [1] is a cyclic generator of the additive group (Z12,+),
but there are several other cyclic generators. Which other elements a = [j] generate
(Z12,+)?

(a) Determine the order of each element [k] in Z12 by writing out all of its
“additive powers” m · [k],m = 0, 1, 2 . . . until you hit the first repeat m · [k] =
[0]. You have then determined the cyclic subgroupH = 〈[k]〉 and the additive
order o([k]) of its generator. For which k, if any, is o([k]) = 12?

You might get away with less computation by noting the symmetries [11] = −[1], [10] =
−[2], . . . , [6] = −[6].

(b) Verify that the elements [k] and −[k] always generate the same additive
subgroup of Z12. �

3.1.38 Exercise. Repeat the previous exercise taking G = (Z7,+) and G = (Z6,+). �

No discussion of cyclic groups would be complete without mention of the following
result, whose proof depends solely on properties of the system of integers (Euclidean
Division Algorithm).

3.1.39 Proposition. Every subgroup of a cyclic group is also cyclic.

Proof: Let G = 〈a〉 be a cyclic group with generator a and let H be any subgroup.
There is nothing to prove if H = (e) or H = G, so we may assume H is a proper subgroup
of G. There are two cases to consider: (i) o(a) = ∞, and (ii) o(a) = n <∞. The proof in
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Case (i) is quite a bit simpler than that in Case (ii), though it employs the same general
strategy; we leave the reader to work out the proof when o(a) = ∞ (Exercise 3.1.39A
below) after reading the following discussion of the case o(a) = n.

When a has finite order let m be the smallest positive exponent such that b = am

lies in H . This obviously occurs for some exponent since a generates G; furthermore
1 < m < n if H is proper. (Why?)

We claim that H = 〈b〉. Obviously 〈b〉 ⊆ H since b ∈ H . For the reverse inclusion: if
y ∈ H then y = aℓ for some ℓ ∈ Z. Applying the Euclidean Division algorithm we may
write ℓ = ms+ r with 0 ≤ r < m, s ∈ Z. Since am = b by definition of m, we get

aℓ = ams+r = (am)
s
·ar = bs ·ar

and
ar = b−s ·aℓ (which is in H since aℓ and b ∈ H)

Thus ar ∈ H , but m is the smallest positive exponent such that am ∈ H ; since
0 ≤ r < m we arrive at a contradiction unless the remainder is zero. Hence r = 0, so

e = b−s ·aℓ and aℓ = bs

and aℓ ∈ 〈b〉, proving the reverse inclusion H ⊆ 〈b〉. �

*3.1.39A Exercise. Suppose a cyclic group G = 〈a〉 is generated by an element of
infinite order. Prove that any subgroup H ⊆ G is also cyclic, H = 〈b〉 for some b ∈ H ,
and that o(b) = ∞ unless H is the trivial subgroup H = (e).
Hint: As mentioned earlier, o(a) = ∞ means that G = 〈a〉 is isomorphic to the additive
group (Z,+). Thus we may as well assume G = (Z,+) and H ⊆ Z. If H 6= (0), look at
the smallest additive power b = m ·a, m ≥ 1, such that m ·a lies in H . Use Euclidean
Division by m to prove H ⊆ 〈b〉 = b·Z. �

In particular all subgroups H of (Z,+) are cyclic, and have the form Hm = Z · m for
some integer m ≥ 0, with H0 = {0} and H1 = Z, H2 = 2·Z, etc.

The next result shows that the subgroups of the cyclic group (Zn,+) correspond to
the divisors of the modulus n.

*3.1.40 Exercise. Let n > 1. For each divisor d|n, 1 ≤ d ≤ n, construct an explicit

cyclic subgroup Hd ⊆ Zn such that |Hd| = d by finding an element of order d in (Zn,+).
Hints: The cases d = 1, d = n are trivial. You might try it first for, say, n = 12. �

Later, at the end of Section 3.4, we will go further and prove that there is a unique

subgroup Hd ⊆ Zn for each divisor d|n, and that these are the only subgroups in Zn.

3.1.41 Exercise. Suppose a group element x ∈ (G, · ) has the property xm = e for some
integer m 6= 0. Then x has finite order o(x), but the exponent m might not be the order
o(x) of the element x. Prove that any such exponent m must be a multiple of o(x).
Hint: Letting s = o(x), write m = qs+ r with 0 ≤ r < s. �

*3.1.41A Exercise. If G is a finite group, prove that there is an integer N ∈ N such
that xN = e for all x in G. �

*3.1.41B Exercise. Explain why the only group of order |G| = 2 is isomorphic to
(Z2,+). �

3.1.42 Example. Let (G, ·, ) be a group of order |G| = 3. Prove that G must be cyclic,
hence commutative, and that G is isomorphic to (Z3,+).

Discussion: The maximum possible order m of any element in G can only be m = 1, 2,
or 3, but if m = 1 that would mean x1 = e for all x, and then G consists of the single
element e, contrary to the the fact that |G| = 3. If m = 3 there is some element such
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that e, a, a2 are distinct and a3 = e so G = {e, a, a2} = 〈a〉 is a cyclic group generated
by a and is ∼= (Z3,+) as claimed.

In the one remaining case we have m = 2, which means

x2 = e and x−1 = x for all x ∈ G

o(x) = 2 for every x 6= e.

Therefore if a 6= e we have a2 = e and H = {e, a} = 〈a〉 is a cyclic subgroup isomorphic
to Z2. There must be one other element b /∈ H , so that G = {e, a, b} (three distinct
elements). We see that this case cannot arise by observing that the product ab must
equal e, a, or b. But every possibility leads to a contradiction:

ab = e ⇒ b = a−1 = a (contrary to a 6= b)

ab = a ⇒ b = e by cancellation. Contradiction.

ab = a2 ⇒ b = a by cancellation. Contradiction.

The Case m = 2 cannot occur, so m = 3 is the only viable possibility and G ∼= (Z3,+).
�

3.1.43 Exercise. If G is a group of order |G| = 4, prove that G is abelian.
Hint: Look at the largest order o(x) = n for an element of G and examine the cases
n = 1, 2, 3, 4 (some of which cannot occur). If n = 2, every x 6= e has o(x) = 2. �

Obviously [1] is a cyclic generator of (Zn,+) since its additive kth power is

k · [1] = [1] + . . .+ [1] = [k] ,

but there may be other cyclic generators (for instance [3] in Z4 – try it!). So it is
interesting to ask whether the elements [k] that generate Zn under the (+) operation
can be identified explicitly. In fact they can, if you know a little about greatest common
divisors (Chapter 2). The answer reveals an unexpected connection with the group of
multiplicative units (Un, · ) in Zn, which we introduced in Section 2.5. It begins to reveal
the strong links that exist between group theory and number theory.

3.1.44 Theorem. For n > 1, a nonzero element x = [k] in Zn is a cyclic generator

under the (+) operation ⇔ gcd(k, n) = 1 – i.e. if and only if [k] lies in the set Un of

multiplicative units in Zn.

Note: The element [0] can’t generate (Zn,+) if n ≥ 2. Furthermore, in Theorem 2.5.16
we showed that if [k] 6= [0] then we have [k] ∈ Un ⇔ gcd(k, n) = 1. As we noted there,
gcd(k′, n) = gcd(k, n) if k′ ≡ k (mod n), so the property gcd(k, n) = 1 is an attribute of
the entire congruence class [k], independent of any choice of class representative k.

Proof: An element b in a cyclic group H = 〈a〉 generates H ⇔ the known generator
is a power of b, a = bm for some m ∈ Z. [ Implication (⇒) is obvious, and (⇐) follows
because every x ∈ G has the form x = ai = (bm)i = bmi for some exponent i.]

Since a = [1] is an additive generator of (Zn,+) we have

Zn = 〈[k]〉 = {m·[k] : m ∈ Z} ⇔ [1] = m0 ·[k] = [m0] [k] in Zn

for some exponent m0 ∈ Z. This happens ⇔ [k] is a unit in Zn with [k]−1 = [m0]; by
2.4.6 [k] is a unit ⇔ gcd(k, n) = 1. �

This reveals the connection between finding

(a) Cyclic generators [k] of the additive group (Zn,+)

(b) Units [k] ∈ Un and their multiplicative inverses in Zn

(c) The greatest common divisor gcd(k, n), the smallest positive element in the
lattice Λ = Zk + Zn = {rk + sn : r, s ∈ Z}.
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Given two integers 0 < k < n the smallest element in Λ ∩ N can often be determined by
hand. For instance, to determine gcd(4, 27) this way, a little experimentation, calculator
in hand, shows that 7 · 4 + (−1) · 27 = 1 so that gcd(4, 27) = 1. Even when k, n are quite
large, the GCD Algorithm is extremely efficient at finding the greatest common divisor
gcd(k, n) without any need to determine the prime factorizations of k and n, which could
take a long time. As we saw in Chapter 2, variants of this algorithm allow us to quickly
find coefficients r, s ∈ Z such that ra+ sb = gcd(a, b).

Later on we will prove a remarkable fact about the group of units Un.

The multiplicative group of units (Up, · ) is always cyclic

when the modulus n is a prime.

Although this assures existence of a cyclic generator in Up actually finding one can be
quite difficult for large primes, a fact that can be exploited in cryptography. Since all
nonzero elements in Zp have multiplicative inverses when p is a prime, we have Up =
Z×

p = Zp ∼ {0} and |Up| = p− 1. Once we know this group is cyclic, it follows that it is
isomorphic to the additive group Zp−1 of the same cardinality, so that (Up, · ) ∼= (Zp−1,+)
when p is a prime.

We’re not yet ready to do this proof, but to illustrate we invite you to examine the
situation in U13.

3.1.44A Exercise. Show that the multiplicative group of units (U8, · ) is not a cyclic
group. Show that (U7, · ) is cyclic and exhibit a cyclic generator. �

3.1.45 Exercise. The multiplicative group of units U13 = Z×

13 = {[1], [2], . . . , [12]} can
be shown to be cyclic by direct calculation.

(a) Find all cyclic generators of (U13, · ) by calculating the multiplicative sub-
group generated by each element [k] 6= [0] in Z13.

(b) We know that [1] and −[1] = [12] are units in Z13. If a is a cyclic generator
for (U13, · ) is b = [−1] [a] also a cyclic generator? �

Other Subgroups of G. In addition to formingH = 〈S〉 there are other ways in which a
nonempty subset can determine a subgroup in G. We mention here just two possibilities,
which reveal important stuctural features of any group – i.e. group theorists really want
to calculate these objects in order to understand the group. Other structural features
will be introduced later on.

3.1.46 Definition. The center Z(G) of a group G is the set of elements that commute

with everyone in G
Z(G) = {x ∈ G : gx = xg for all g ∈ G}

These elements form a subgroup that is one of the most important structural features of

any group.

More generally, given a nonempty subset S ⊆ G we may define

(a) The centralizer of S is ZG(S) = {x ∈ G : xs = sx for all s ∈ S}

Notice that x is in the centralizer if and only if xsx−1 = s for each s ∈ S. That is a

stronger requirement than the condition xSx−1 = S mentioned next, which would allow

points to be moved around within S as long as the set S remains invariant.

(b) The normalizer of S is NG(S) = {x ∈ G : xSx−1 = S }

Both ZG(S) and NG(S) are subgroups of G, with NG(S) ⊇ ZG(S) ⊇ Z(G).

An element g ∈ G is in the center Z(G) if and only gxg−1 = x for all x, so we may write

Z(G) = {g : gxg−1 = x for all x ∈ G}
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Obviously G is abelian ⇔ Z(G) = G.

3.1.47 Exercise. If x, g ∈ G prove that g commutes with x ⇔ g−1 commutes with x.
Use this to prove that the center Z(G) is actually a subgroup in G �

3.1.48 Exercise. Prove that

(a) The centralizer ZG(S) of a nonempty set S actually is a subgroup. In particular
the center Z(G) is a subgroup, being the centralizer of S = G .

(b) S′ ⊆ S ⇒ ZG(S′) ⊇ ZG(S). Note the reversal here.

(c) If S generates the subgroup H then S and H have the same centralizer.

(d) ZG(S) ⊆ NG(S) �

Hint: Recall our “bottom up” description 3.1.26 of the group generated by S ⊆ G. �

*3.1.49 Exercise. Let S be a nonempty subset that generates a group G. Prove that
x is in the center of G⇔ x commutes with each generator – i.e. xs = sx for all s ∈ S.
Note: This greatly simplifies the task of deciding whether a group element g lies in the
center, since it is easier to decide if it commutes with a small set of generators than to
show it commutes with all elements in G. �

We close this section with a curious result regarding finite subgroups. In defining
“subgroup” we required that a subset have several properties in addition to H ·H ⊆ H ,
which in general does not suffice to make H a subgroup; just consider H = N in G =
(Z,+). It is therefore surprising that this is all we need if the group is finite, or even if
|G| = ∞ and the subset H is finite.

3.1.50 Theorem. Let H be a nonempty finite subset of a group G, such that H ·H =
{h1h2 : h1, h2 ∈ H} is equal to H. Then the identity element e automatically lies in H
and H is a subgroup of G.

Proof: Fix an element a ∈ H and form the powers a, a2, a3, . . .. These all lie in H .
Since |H | < ∞ there must exist a first index k ≥ 2 for which this list contains a repeat,
say ak = aℓ, with 1 ≤ ℓ < k. Multiply on the right by a−ℓ to get e = ak−ℓ. Since
k − ℓ > 0, the identity element e ∈ G appears in H .

To see why a−1 (inverse in G) also lies in H , there are two possibilities to consider.
Case 1: k − ℓ = 1. Then aℓ = ak ⇒ ak−ℓ = a1 = e. In this case, a−1 = a = e is in H .
Case 2: Again we have

e = ak−ℓ = a · ak−ℓ−1

but now a−1 = ak−ℓ−1 lies in H because k−ℓ−1 ≥ 1. Thus H has all properties required
of a subgroup. �

Section 3.1: Additional Exercises

*3.1.51 Exercise. Let G be a group (finite or not).

(a) If (a · b)2 = a2 · b2 for all a, b ∈ G show that G must be commutative.

(b) If every element in G is its own inverse (so a2 = e for all a ∈ G) show that
G must be commutative. �

3.1.52 Exercise. Let G be a nonempty set closed under an associative product (·),
which satisfies the one-sided versions of the other two group axioms:

(a) There is an element e ∈ G such that a · e = a for all a ∈ G.

(b) For any a ∈ G there exists a “right inverse” y(a) such that a · y(a) = e.
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Prove that (G, · ) must be a group. �

3.1.53 Exercise. Let G = GL(2,Z3) be the group of all 2 × 2 matrices

A =

(

a b
c d

)

such that ad− bc 6= 0, and a, b, c, d ∈ Z3 (integers mod 3)

Such matrices can be multiplied in the usual way and matrix multiplication is associative
because multiplication and addition are associative in Z3. Furthermore we may define
detA in the usual way, det(A) = ad− bc ∈ F. Carry out the following:

(a) Verify that G, equipped with the usual matrix multiplication, actually
is a group.

(b) Compute the order |G| of this group.

(c) If we require that ad−bc = 1 instead of ad−bc 6= 0 in defining G, we get
a subgroup SL(2,Z3) ⊆ GL(2,Z3). What is the order of this subgroup?

Hints: In (a) use: (i) Every nonzero element in Z3 has a multiplicative inverse (likewise
in Zn provided n is prime); (ii) det(AB) = det(A) ·det(B) even though matrix entries lie
in Z3, and the usual formula for the inverse A−1 of a 2 × 2 matrix still works whenever
detA 6= 0. �

3.1.54 Exercise. If G is a group that has no proper subgroups (H 6= {e} or G), prove

(a) G must be finite and cyclic.

(b) G is either trivial or isomorphic to (Zp,+) for some prime p > 1. �

3.1.55 Exercise (The “ax + b Group”). For each pair a, b ∈ R with a 6= 0 define
the mapping

τa,b : R → R such that τa,b(x) = ax+ b for all x ∈ R

Prove that

(a) Each map τa,b is a bijection from R to R and G = {τa,b : a 6= 0, b ∈ R} is a
group under composition (◦) of operators.

(b) Find explicit formulas for the parameters (a′′, b′′) in the composition product

τa,b ◦ τa′,b′ = τa′′,b′′

in terms of a, b, a′, b′.

(c) Find the parameters a′, b′ that describe the inverse τa′,b′ = (τa,b)
−1 of an

element in G. �

3.1.56 Exercise. If H is a subgroup of an arbitrary group G prove that the normalizer

NG(H) = {x ∈ G : xHx−1 = H}

is a subgroup, and that NG(H) ⊇ H . �

3.1.57 Exercise. If H is a subgroup of G the intersection N =
⋂

x∈G xHx
−1 is a sub-

group of G. Explain why aNa−1 = N for all a ∈ G. �

3.2. Subgroups, Cosets, and Homomorphisms of Groups.
A subgroupH in a group G determines a natural decomposition of the group into disjoint
cosets of H .

3.2.1 Definition. Given any subgroup H ⊆ G, its left cosets are the subsets of the
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form xH = {xh : h ∈ H} with x ∈ G. These are of interest because the whole group

splits into a disjoint union of its distinct cosets xH. One can also define right cosets
as sets of the form Hx, right translates of H by elements x ∈ G. There is no difference

between left- and right cosets if the group G is abelian, but we will encounter many non-

commutative groups where the distinction must be recognized. The group element x is a

coset representative for xH. A coset can have various representatives, and in Lemma

3.3.1 below we will determine when x, y ∈ G yield the same coset, xH = yH.

For simplicity we will focus on left cosets xH , but everything said here applies equally
well to right cosets. The union of all cosets xH is all of G because

x ∈ G⇒ x = x·e ∈ xH

but in fact these cosets partition G into disjoint pieces. To see why, we observe that

(13)
Two cosets xH, yH are either identical as subsets of G or are disjoint, with

xH ∩ yH = ∅.

To prove this claim, consider what would happen if xH and yH overlapped: there would
exist h1, h2 ∈ H such that xh1 = yh2. Multiplying on the right by h−1

1 we get y = xh′

where h′ = h1h
−1
2 ∈ H , which in turn implies that

yH = (xh′)H = x(h′H) = xH

(We have h′H = H if h′ ∈ H because H is a subgroup, see the following Exercise). Thus
cosets are identical if they overlap at all, and the distinct cosets partition G.

3.2.2 Exercise. If G is a group and A,B ⊆ G we define the product set to be

AB = {ab : a ∈ A, b ∈ B}.

If H a subgroup and h0 ∈ H , prove that the following product sets are all equal to H .

(a) H ·H = {xy : x ∈ H, y ∈ H} (product of two sets in G)

(b) h0H = {h0y : y ∈ H}

(c) Hh0 = {xh0 : x ∈ H} �

The following example provides a concrete illustration of what all this means.

3.2.3 Example. The coordinate plane R2 becomes an abelian group G = (R2,+) when
equipped with the usual vector addition operation (+), and the x-axis H = {(x, 0) : x ∈
R} is easily seen to be a subgroup. If x = (x0, y0) the additive coset

x +H = {(x0, y0) + (s, 0) : s ∈ R} = {(x0 + s, y0) : s ∈ R}

= {(x, y) ∈ R2 : x ∈ R, y = y0}

is just the horizontal line passing through the point x. In this group the cosets x+H are
precisely the horizontal lines in the plane, which is the disjoint union of these lines. Two
vectors x,y determine the same coset, with x +H = y +H if and only if the difference
vector y − x lies in H , see Figure 3.2 �

Homomorphisms. A homomorphism between two groups (G, · ) and (G′, ∗) is any
map φ : G→ G′ that intertwines the group operations, in the sense that

(14) φ(x · y) = φ(x) ∗ φ(y) for all x, y ∈ G

The map is an isomorphism if it satisfies (14) and is also a bijection. Then the inverse
map φ−1 : G′ → G exists and it too intertwines the group operations, in the reverse
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Figure 3.2. If H = {(x, 0) : x ∈ R} in G = (R2,+), the coset x + H is the horizontal line
passing through x. Two vectors x, y determine the same coset ⇔ their difference y − x

lies in H (parallel to the x-axis).

direction. In fact, if u, v ∈ G′ there exist unique elements x, y ∈ G such that φ(x) =
u, φ(y) = v. Then by definition of φ−1 we have φ−1(u) = x, φ−1(v) = y, and we get

φ−1(u ∗ v) = φ−1(φ(x) ∗ φ(y))

= φ−1(φ(x · y)) (since φ is a homomorphism)

= x · y (since φ−1 ◦ φ = idG)

= φ−1(u) · φ−1(v)

Both φ and φ−1 are isomorphisms.
Certain terminology is standard in discussing homomorphisms φ : G→ G′ of groups.

(15)

1. The kernel of φ is the set of elements that get “killed” by φ:

ker(φ) = {x ∈ G : φ(x) = e′} ,

where e′ is the identity element in G′. The kernel is a subgroup
of the initial group G.

2. The range range(φ) is the forward image of the initial group

range(φ) = φ(G) = {φ(x) : x ∈ G}

The range is always a subgroup of the target group G′, but it
may be a proper subgroup.

Several basic properties of homomorphisms can be read out of equation (14).

(16) If φ : G → G′ is a homomorphism and e ∈ G, e′ ∈ G′ are the respective
identity elements, then φ(e) = e′.

In fact, in any group the only solution of the “idempotent equation” x2 = x is the
identity element; this follows if we multiply both sides by x−1. In the present situation
φ(e)2 = φ(e) ∗ φ(e) = φ(e · e) = φ(e), so φ(e) satisfies this equation in G′ and φ(e) = e′.

(17) If φ : G→ G′ is a homomorphism and x ∈ G, the image φ(x−1) of an inverse
is equal to the inverse (φ(x))−1 of the image in G′.

Since x · x−1 = e in G we get φ(x) ∗ φ(x−1) = φ(e) = e′ in G′, and (17) follows by
definition of group inverse in G′.

(18) A homomorphism φ : G→ G′ is one-to-one ⇔ ker(φ) = (e)
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In fact, we have

φ(x) = φ(y) ⇔ e = φ(x)−1φ(y) = φ(x−1y)

⇔ x−1y ∈ K = ker(φ)

so if K is trivial we get x−1y = e and x = y. Conversely if φ is one-to-one the only
element x ∈ G such that φ(x) = e′ = φ(e) is x = e, so the kernel is trivial.

3.2.4 Examples. The trivial homomorphism φ0 : G → G′ squashes all elements of the
initial group to the identity element in G′, so that φ0(x) = e′ for all x ∈ G. The identity

map id : G → G of any group onto itself is another example of a homomorphism. More
interesting examples include

(a)G = G′ = (Z,+) with φ(x) = −x, the inversion map. This map is clearly a
bijection, and hence is a nontrivial isomorphism from (Z,+) to itself.

Actually, in any abelian group (G, · ) the inversion map J(x) = x−1 is an isomorphism
J : G → G. This is not true if G is noncommutative because J(xy) = (xy)−1 = y−1x−1

need not equal J(x)J(y) = x−1y−1.

(b) In G = (Zn,+) the inversion map takes the form

φ([j]) = −[j] = [−1] · [j] = [n− j] for 0 ≤ j < n

It is clearly a bijection, and hence a nontrivial isomorphism from (Zn,+) to
itself (an “internal symmetry” of Zn).

(c)G = (Z,+) and G′ = (Zn,+) with φ(j) = [j]. The map φ : Z → Zn is well
defined, with φ(0) = [0] and

φ(k + ℓ) = [k + ℓ] = [k] + [ℓ] = φ(k) + φ(ℓ) ,

because of the way (+) was defined in Zn (cf. equation (15) of Chapter 2).
The map is obviously surjective from Z to Zn but its kernel

ker(φ) = {k ∈ Z : k ≡ 0 (mod n)} = nZ = {nk : k ∈ Z}

is not trivial. Thus φ fails to be one-to-one and is not an isomorphism.
Note: The map φ : Z → Zn is just the quotient map for the relation x

R
∼ y ⇔

x ≡ y (mod n) on Z, as explained at the end of Chapter 2.

(d)G = (R,+) and G′ = (R×, · ), the nonzero real numbers R× equipped with
multiplication as its group operation. The usual exponential map φ(x) = ex

of Calculus is a group homomorphism from R to R×. Its kernel is trivial
because ex = 1 ⇔ x = 0, so φ is one-to-one. But the map is not surjective,
because φ(x) > 0 for all x while R× includes all negative numbers y < 0.

(e) If (G, · ) is any abelian group and k ∈ Z, the “kth power map” φk : G → G
given by φk(x) = xk is always a homomorphism because (xy)k = xk ·yk. In
additive notation, writing G = (G,+) we have φ0(x) = 0

G
for all x and for

k > 0 the map φk becomes the additive kth power map

φk(x) = k·x = x+ . . .+ x (k times)

Similarly if k < 0. �

Notation: The last example (e) will be particularly important in working with the
additive groups (Zn,+). In this situation φk takes the form

φk([ℓ]) = k · [ℓ] = [ℓ] + . . .+ [ℓ] = [kℓ] = [k] · [ℓ]
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for all [ℓ] ∈ Zn and k ∈ Z. Since the right-hand expression involves only the (mod n)
congruence class of the “exponent” k, we see immediately that φk′ = φk as maps from
Zn → Zn if and only if k′ is congruent to k (mod n). It follows that there are only
finitely many distinct homomorphisms φ : Zn → Zn among the φk, namely

φ0 = the “zero homomorphism” that maps every [ℓ] to 0·[ℓ] = [0]

φ1 = the identity map idZn
because φ1([ℓ]) = 1·[ℓ] = [ℓ]

φ2([ℓ]) = 2 · [ℓ] = [2·ℓ] = [2] · [ℓ]

...

φn−1([ℓ]) = (n− 1) · [ℓ] = [n− 1] · [ℓ] = [−1] · [ℓ] = [−ℓ] (inversion map)

An arbitrary homomorphism φ : Zn → Zn appears in this list because a homomorphism
is determined by where it sends the additive generator [1] and we must have φ([1]) = [k]
for some 0 ≤ k ≤ n− 1. If φ([1]) = [k] we get

φ([2]) = φ([1] + [1]) = φ([1]) + φ([1]) = [k] + [k] = 2 · [k] = k · [2] = [2k]

and similarly φ([ℓ]) = k·[ℓ] = [k·ℓ] = φk([ℓ]) for all [ℓ] ∈ Zn. Thus φ = φk.

3.2.5 Exercise. In (Zn,+) let φ : Zn → Zn be the homomorphism φ3([ℓ]) = 3 · [ℓ] = [3ℓ].
Compute ker(φ3) and range(φ3) in the particular cases: (i) n = 5 and (ii) n = 6. �

The pattern of left cosets xK of the kernelK = ker(φ) of a homomorphism φ : G→ G′

yields a geometric picture of the way φ acts, very much as the behavior of a linear
operator T : V → V ′ between vector spaces is determined by the nature of its kernel
ker(T ) = {v ∈ V : Tv = 0}. Applying our previous discussion of cosets to the particular
subgroup H = ker φ we can read out the basic geometric facts about homomorphisms.

3.2.6 Proposition. If φ : G→ G′ is a homomorphism of groups and K = ker(φ) is its

kernel, then

(a) All points in a coset xK map to a single point in G′ under φ. Thus a

homomorphism is constant on each coset of its kernel.

(b) Distinct cosets xK 6= yK in G are disjoint, with xK∩yK = ∅, and they map

to distinct points in G′.

as shown in Figure 3.3. Furthermore φ is one-to-one, and hence an isomorphism from

G to the subgroup range(φ) ⊆ G′, if and only if its kernel is trivial: ker(φ) = (e).

Proof: Part (a) follows because

φ(xk) = φ(x) · φ(k) = φ(x)·e′ = φ(x)

for all k ∈ K. In (b),we have already seen that left cosets of any subgroup are disjoint.
Furthermore

φ(x) = φ(y) ⇔ φ(x−1y) = φ(x)−1φ(y) = e′

so x−1y ∈ K = ker φ. Hence φ(yK) = φ(xK) and yK = xK by 3.2.2. �

We will have more to say about homomorphisms of groups, but for now we comment
on the meaning of isomorphism. If two groups are isomorphic, which we indicate by
writing G ∼= G′, there is a bijection φ : G → G′ that intertwines the group operations,
so that φ(x · y) = φ(x) ∗ φ(y). That means the groups have exactly the same properties
as algebraic structures, and differ only superficially in the way we label objects in the
group or in the symbols we use to indicate the group operations. To an algebraist they are
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Figure 3.3. Mapping properties of a homomorphism φ : G → G′ are largely
determined by its kernel K = ker(φ) = {x ∈ G : φ(x) = e′}. Cosets xK collapse to
single points in range(φ) ⊆ G′, and distinct cosets xK 6= yK map to different points
in the range.

different models of the same group. In contrast, existence of a homomorphism φ : G→ G′

means that some, but not all, properties of the groups are closely related. The concepts
of isomorphism and homomorphism play the same roles in algebra that congruence and
similarity play in geometry.

The following concrete examples show how various familiar groups arise as homomor-
phic images of the particular groups (R,+) and (Z,+).

3.2.7 Example. Let (S1, · ) be the circle group, the set of complex numbers such that
|z| = 1, equipped with complex multiplication as the group operation. The exponential
map

φ : (R,+) → (S1, · ) given by φ(θ) = e2πiθ = cos(2πθ) + i sin(2πθ)

is a group homomorphism since φ(0) = 1 + i0 and ez+w = ez ·ew, which implies

φ(θ1 + θ2) = e2πi(θ1+θ2) = e2πiθ1 · e2πiθ2 = φ(θ1) · φ(θ2)

It is easily verified that range(φ) is all of S1 because e2πit = cos(2πt) + i sin(2πt) sweeps
out the unit circle as t goes from t = 0 to t = 1. A real number θ is in the kernel
K = ker(φ) if and only if

1 = φ(θ) = e2πiθ ⇔

{

cos(2πθ) = 1

sin(2πθ) = 0
which happens ⇔ θ ∈ Z

so ker(φ) = Z in R. By 3.2.6 it follows that θ1 and θ2 have the same image under
φ ⇔ e2πi(θ2−θ1) = 1 ⇔ θ1 and θ2 differ by an integer (i.e. they are “congruent mod 1”).
�

3.2.8 Example. Similarly, there is a natural surjective homomorphism ρ from (R,+)
to the group G = {Rθ : θ ∈ R} of rotations about the origin in the Cartesian plane
R2. As we showed in 3.1.11, Rθ = idR2 when θ = 0 and Rθ1+θ2

= Rθ1
◦ Rθ2

, so G is a
group under composition (◦) of operators, and ρ(θ) = Rθ is a surjective homomorphism
ρ : R → G. Obviously Rθ+2πk = Rθ for any integer k, and in fact

θ ∈ ker(φ) ⇔ Rθ = I ⇔ θ is a whole multiple of 2π radians

Thus ker(φ) = 2πZ = {2πk : k ∈ Z} and φ(θ1) = φ(θ2) ⇔ θ1 and θ2 differ by an integer
multiple of 2π. �

The strong similarity between Examples 3.2.7-3.2.8 will be explained when we take up
the “First Isomorphism Theorem” later in this section.

3.2.9 Example. There is a natural surjective homomorphism ψn from (Z,+) to the
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multiplicative group (Ωn, · ) of nth roots of unity defined in 3.1.14. The appropriate map
is

ψn(k) = ωk = e2πik/n for all k ∈ Z

where ω is the primitive nth root of unity ω = e2πi/n. It is immediate from the exponent
law ez+w = ez ·ew that ψn : Z → Ωn is a homomorphism, and it is obviously surjective.
To determine the kernel observe that

k ∈ ker(ψn) ⇔ 1 = ωk = e2πik/n ⇔ 2π · k
n

is a multiple of 2π

⇔ k
n
∈ Z ⇔ k is divisible by n ⇔ k ∈ n·Z

Thus ker(ψn) = nZ = {nk : k ∈ Z}. By 3.2.6 we have ψn(k) = ψn(ℓ) ⇔ k and ℓ differ
by a multiple of n. That is the same as saying k ≡ ℓ (mod n), so ψ sends each (mod n)
congruence class in Z to a single point in Ωn, and different classes go to different roots
of unity. Thus ψ : Zn → Ωn is bijective and (Zn,+) ∼= (Ωn, · ). �

3.2.10 Exercise. Verify that the bijection ψ : Zn → Ωn in 3.2.9 intertwines the group
operations (+) and (·), making ψ a group isomorphism as claimed. �

3.2.11 Exercise. Below we give the multiplication tables for two groups (G, · ) and
(G′, ∗) of order 4.

(a) In each case, which is the identity element?

(b) Are both groups abelian?

(c) Are there any elements a 6= e such that a2 = e – i.e with o(a) = 2?

(d) Is G ∼= G′? (Prove or disprove.) �

a b c d

a a b c d
b b a d c
c c d a b
d d c b a

Product x · y in G

a′ b′ c′ d′

a′ d′ c′ b′ a′

b′ c′ d′ a′ b′

c′ b′ a′ d′ c′

d′ a′ b′ c′ d′

Product x ∗ y in G′

3.2.12 Exercise. Prove that the permutation group on three elements S3 is not isomor-
phic to (Z6,+), even though |G| = 6 in each case. �

3.2.13 Exercise. If G is any group and a ∈ G any element of infinite order, explain
why the subgroup it generates H = 〈a〉 is isomorphic to (Z,+). �

3.2.14 Exercise. If G is any group and a ∈ G any element of finite order o(a) = n,
explain why H = 〈a〉 is isomorphic to (Zn,+). �

3.2.15 Exercise. If G is a finite cyclic group, say with G = 〈x〉 and |G| = o(x) = n,
explain why G is isomorphic to the additive group (Zn,+). Thus all cyclic groups of the
same size are isomorphic. �

3.2.16 Exercise. Prove that the exponential map φ(t) = et is an isomorphism from
G = (R,+) to the group G′ = {x ∈ R : x > 0} of strictly positive real numbers, equipped
with multiplication as the group operation. �

*3.2.17 Exercise. If a group G is generated by a subset S, prove that any homo-
morphism φ : G → G′ is determined by what it does to the generators, in the following
sense:

If φ1, φ2 : G→ G′ are homomorphisms such that φ1(s) = φ2(s) for all s ∈ S,

then φ1 = φ2 everywhere on G.
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This can be quite useful in constructing homomorphisms of G, especially when the group
has a single generator. �

Similarly a linear operator T : V → V ′ between vector spaces is determined by what it
does to a set of basis vectors in the initial space V .

3.2.18 Exercise. For each integer k ∈ Z let φk : Zn → Zn be the homomorphism

φk([ℓ]) = k · [ℓ] = [kℓ] for all [ℓ] ∈ Zn

as in the discussion of 3.2.1(e), where we remarked that

φk′ = φk as maps on Zn ⇔ k′ ≡ k (mod n)

For each of the following moduli n > 1

(a) n = 7 (b) n = 8 (c) n = 12

determine all values of 0 ≤ k < n such that φk : Zn → Zn is a bijection.
Hint: Since Zn is finite, a homomorphism φk will be a bijection ⇔ φ is one-to-one
⇔ ker(φk) is trivial (see 3.2.5). �

For these k the map φk is an isomorphism of G with itself. These “self-isomorphisms,”
or “internal symmetries,” of a group are referred to as automorphisms and will be of
considerable interest as we go along. In each case in Exercise 3.2.18 you will discover
that φk is a bijection ⇔ gcd(k, n) = 1.

3.2.19 Exercise. In each of the following decide whether the mapping φ : G→ G′ is a
homomorphism. For those that are, determine kerφ.

(a)G = the nonzero real numbers R ∼ {0} equipped with multiplication as the
group operation, G′ = G, φ(x) = x2 for all x.

(b)G and G′ as in (a), with φ(x) = ex.

(c)G = (R,+), G′ = G, φ(x) = x+ 1 for all x

(d)G and G′ as in (c) with φ(x) = 13x for all x.

(e)G is any abelian group, G′ = G, and φ(x) = x5 for all x.

3.2.20 Exercise. Let G be a finite abelian group with |G| = n. Let k > 0 be an integer
such that gcd(k, n) = 1. Prove that every g ∈ G can be written in the form g = xk for
some x ∈ G. �

3.3 Coset spaces and quotient groups.
Let H be a subgroup in a group (G, · ). As in Section 3.2, the left cosets are the subsets
having the form xH = {xh : h ∈ H} for some x ∈ G, and the collection of all such cosets
is denoted by G/H . Similarly we could define the space H\G of right cosets, which
have the form Hx. We will mostly deal with G/H . We no longer assume H is the kernel
of a homomorphism φ : G→ G′.

We are now going to regard G/H as a “quotient space” of the group G, so you might
want to review the discussion of “RST equivalence relations” at the end of Chapter 1,
especially the definition of the quotient spaceX/R associated with an equivalence relation
x

R
∼ y on a set X . Let’s start by asking when two group elements x, y determine the

same coset: xH = yH .

3.3.1 Lemma. Let H be a subgroup in G and let x, y be points in G. Then
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(a) We have xH = yH ⇔ there is some h ∈ H such that y = xh. In particular,

xH = H ⇔ x ∈ H.

(b) Two cosets xH and yH are either identical sets in G or are disjoint.

(c) The relation x
R
∼ y ⇔ xH = yH is reflexive, symmetric, and transitive, and

the equivalence classes for this relation are precisely the cosets in G/H: for

any x the class [x] = {g ∈ G : g
R
∼ x} is equal to xH.

Proof: The first statement is a simple calculation: since y ∈ yH the identity xH = yH
implies that xh = y for some h ∈ H , and conversely if such an h exists we get
yH = xhH = xH because hH = H (recall 3.2.2). We proved (b) earlier, see (13),
and we leave the reader to check that x

R
∼ y is in fact an rst equivalence relation. The

equivalence class [x] = {y ∈ G : y
R
∼ x} = {xh : h ∈ H} is precisely the coset xH . �

The space of cosets G/H is just the quotient space of equivalence classes under the
rst relation x

R
∼ y. Note carefully:

Points in the quotient space G/H are subsets in the original group G.

The quotient map π : G→ G/H for this relation is given by

π(x) = xH (since xH is the equivalence class for x)

General properties of this surjective map follow directly from this definition.

• Under π, each coset xH ⊆ G collapses to a single point in the quotient space
G/H .

• Distinct (disjoint) cosets xH 6= yH in G are mapped by π to distinct points
in the quotient space G/H .

In Example 3.2.3 we described a quotient space G/H , in which G = (R2,+), H is the x-
axis, and G/H consisted of all horizontal lines in the plane; in that example the quotient
map sends a vector x ∈ R2 to the horizontal line x +H , a point in G/H .

3.3.2 Example. If G = (Z,+) and n ≥ 2 the set H = nZ = {nk : k ∈ Z} is a subgroup
in Z. Since G is abelian there is no distinction between left and right cosets. Because
the group operation is being written as (+) the cosets take the form

x+H = {x+ nk : k ∈ Z}

= {y ∈ Z : y − x is a whole multiple of n}

= {y ∈ Z : y − x ≡ 0 (mod n)}

= {y ∈ Z : y ≡ x (mod n)}

The cosets are precisely the (mod n) congruence classes in Z, and the space of cosets
G/H is what we have been calling Zn. What’s new is that we see Zn as a quotient space
associated with G = Z. The quotient map π : Z → Zn assigns to each k ∈ Z its (mod n)
congruence class [k] = k + nZ.

In this particular example the quotient space G/H = Z/nZ = Zn inherits a natural
group structure of its own, and the quotient map is easily seen to be a homomorphism

from (Z,+) to (Zn,+). (This is immediate from the definition of the group operation
[k] + [ℓ] = [k + ℓ] on congruence classes.) �

For more general groups G and subgroups H it is not always possible to impose a group
structure on the quotient space G/H ; it worked in the last example largely because the
group was abelian.
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Here is another example of this sort.

3.3.3 Example. Let G = (R,+) and H = Z. The group is abelian, so left and right
cosets coincide and have the form

x+H = x+ Z = {y ∈ R : ∃ k ∈ Z such that y = x+ k}

= {y ∈ R : y ≡ x (mod 1)}

Obviously a coset x+Z is a periodic subset of R with spacing 1 between successive points.
Note too that every coset can be written (uniquely) in the form x+Z with representative
0 ≤ x < 1, so the cosets in R/Z are labeled by the points in the interval [0, 1) and the
coset space R/Z is uncountably infinite.

As in the last example, the quotient G/H = R/Z inherits a group structure from G,
obtained by imitating the definition of the (+) operation in Zn. We define

(19) (x + Z) ⊕ (y + Z) = (x+ y) + Z for x, y ∈ R,

and leave the reader to carry out the routine verification that

(i) The operation (⊕) is independent of the particular coset representatives x
and y that appear in the definition (19).

(ii) Under the (⊕) operation R/Z becomes an abelian group.

(iii) The identity element is the coset [0] = 0 + Z and additive inverses are given
by −(x+ Z) = (−x) + Z, so in terms of cosets we have −[x] = [−x].

(iv) The quotient map π : (R,+) → (R/Z,⊕) is a surjective homomorphism of
groups.

But what is the mysterious quotient group (R/Z,⊕)? We now show it is isomorphic
to something quite concrete and familiar, namely the “circle group”

S1 = {z ∈ C : |z| = 1} equipped with complex multiplication as the group law.

The proof involves a construction that will be very important in what follows.
In Example 3.2.7 we saw that the exponential map φ(θ) = e2πiθ = cos(2πθ)+i sin(2πθ)

is a surjective homomorphism from (R,+) to the circle group (S1, · ). This map is, how-
ever, not one-to-one because its kernel ker(φ) = Z, which we computed in 3.2.7, is
nontrivial, recall (18). We now show how φ induces a bijection φ̃ between the quotient
space R/Z and S1 that turns out to be a group isomorphism. The idea is to define φ̃
using coset representatives, letting

(20) φ̃(x+ Z) = φ(x) = e2πix for all x ∈ R

This makes sense because φ is constant on cosets x + Z

since φ(x +m) = φ(x)·φ(m) = φ(x)·e2πim = φ(x) for all
x ∈ R,m ∈ Z. Thus φ̃ makes sense independent of the
coset representative. Notice that our definition of φ̃ makes
the diagram in Figure 3.4 “commute,” with φ̃ ◦ π = φ.

(R,+)
φ

−→ (S1, · )
π ↓ ր

(R/Z,⊕) φ̃

Figure 3.4. φ̃(x+ Z) = φ(x).
Next, φ̃ is one-to-one because, as noted earlier,

φ̃(x+ Z) = φ̃(y + Z) ⇔ φ(x) = φ(y) ⇔ y = x+ k ⇔ x+ Z = y + Z .

The map is also onto, hence a bijection, because every point p ∈ S1 can be expressed as
e2πix = φ(x) = φ̃(x+ Z) for some real x. Finally, φ̃ is a group homomorphism because

φ̃((x+ Z) ⊕ (y + Z)) = φ̃((x+ y) + Z) = φ(x + y)

= φ(x) · φ(y) = φ̃(x+ Z) · φ̃(y + Z) .
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by definition of the (⊕) operation in R/Z. We conclude that (R/Z,⊕) ∼= (S1, · ) �

We will soon have more to say about the construction in 3.3.3, but first we consider
a special class of subgroups H , the normal subgroups. For most groups and most choices
of H there is no way to define a group operation in the space of cosets G/H ; we managed
this miracle in Examples 3.3.2-3.3.3 only because the group G was abelian. One might
naively try to imitate what we did in defining the (+) operations in Zn or R/Z, by
defining an operation ⊗ from G/H ×G/H → G/H

(xH) ⊗ (yH) = xyH for arbitrary cosets xH, yH ∈ G/H

Unfortunately, the outcome xyH is defined in terms of representatives x, y of the ini-
tial cosets, and if no restrictions are placed on H the coset xyH might depend on the
particular choice of representatives – i.e. there might exist x′, y′ such that

x′H = xH and y′H = yH, but x′y′H 6= xyH

Indeed, xyH might be a union of several cosets rather than a single coset in G/H . When
this happens the outcome cannot be consistently determined from the cosets we started
with and the “operation” ⊗ is not well-defined.

On the other hand a simple condition on H insures that this construction does work,
even if G is nonabelian.

3.3.4 Definition. A subgroup N in G is a normal subgroup if it has the property

(21) xN = Nx for all x ∈ G ,

which means there is no difference between left- and right-cosets of N . All subgroups are

normal if G is abelian. Normality of a subgroup is indicated by writing N ⊳G. �

It is easily seen that each of the following properties of a subgroup N is equivalent to
normality, which gives us some flexibility in determining whether a subgroup is normal.

3.3.5 Lemma. If N is a subgroup of G, each condition below implies the others.

(a) The subgroup N is normal: xN = Nx for all x ∈ G.

(b) xNx−1 = N for all x ∈ G.

(c) xNx−1 ⊆ N for all x ∈ G.

(d) xnx−1 ∈ N for all x ∈ G,n ∈ N .

Proof: Implications (d) ⇔ (c) ⇐ (b) ⇔ (a) are obvious. To get (c) ⇒ (b) we note that
condition (c) says

xNx−1 ⊆ N for all x ∈ G, or

N ⊆ x−1Nx for all x ∈ G

But x−1 runs through all of G as x runs through G, so in the last line we may replace
x−1 by x (owing to the presence of the “for all” quantifier) to get

N ⊆ xNx−1 for all x ∈ G

Since we already know that the reverse inclusion xNx−1 ⊆ N holds, N must be equal to
xNx−1 for all x, as required in (b). �

*3.3.6 Exercise. If H is a subgroup in G and N a normal subgroup, prove that the
product set HN is again a subgroup. If both H and N are normal subgroups, then HN
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is also normal in G. �

*3.3.6A Exercise. Show that the center Z(G) = {x ∈ G : xg = gx, ∀g ∈ G} is a normal

subgroup of any group G. �

Now we come to the definition of a product operation in the coset space G/N . When
N is a normal subgroup we can make sense of our earlier definition

(22) (xN) ⊗ (yN) = xyN for x, y ∈ G .

We must first show that the outcome is independent of the coset representatives x, y and
then must show that the operation satisfies the group axioms. Neither is true in general;
normal subgroups are what make it happen.
Note: If N is a normal subgroup the product set (xN) · (yN) formed from two cosets
can be rewritten as

(xN) · (yN) = xyN

because (xN)(yN) = x(Ny)N = x(yN)N = (xy)NN = xyN (recall 3.2.2). In this
situation the outcome of the operation (xN) ⊗ (yN) introduced earlier is simply the
product set (xN) · (yN), and we shall write it that way from now on.

3.3.7 Theorem (Quotient Groups). Let N be a normal subgroup in a group G.

Then the operation (22) is well defined: the outcome does not depend on the particular

coset representatives x and y. This product satisfies all the group axioms, making the

coset space G/N into a group in its own right. Finally, the quotient map π : G → G/N
becomes a surjective homomorphism of groups with ker(π) = N .

Proof: The product is well defined: If we take other representatives such that x′N =
xN, y′N = yN , then there exist elements n1, n2 ∈ N such that x′ = xn1, y

′ = yn2 and
we get

x′y′ = xn1yn2 = x(yy−1)n1yn2 = xy(y−1n1y)n2

By Lemma 3.3.5(c) the element y−1n1y is in N , hence the product to the right of xy
is an element of N and we may write x′y′ = xyn′′ for some n′′ ∈ N . Thus we get
x′y′N = xyn′′N = xyN and the outcome in (22) does not depend on the choice of coset
representatives.

Associativity of the operation in G/N follows from associativity of the product oper-
ation in the original group because

(xN)((yN)·(zN)) = (xN)(yzN) = x(Nyz)N = x(yzN)N = xyzN = . . . = ((xN)·(yN))zN

It is also clear that the identity coset eN = N acts as an identity element in G/N , and
that x−1N serves as the inverse to the coset xN . Thus (G/N, · ) is a group and π is a
homomorphism of groups because π(xy) = xyN = (xN) · (yN) = π(x) · π(y). �

3.3.8 Exercise. If G is an abelian group every subgroup N is normal and the quotient
group G/N is always abelian. �

The spaces Zn = Z/(nZ) and R/Z are examples of quotient groups. The latter exam-
ple can be generalized considerably by taking G = (Rn,+) and N the lattice subgroup
of integer points Zn in n-dimensional space. The group law is (x + Zn) + (y + Zn) =
(x + y) + Zn, but in this algebraic picture the physical nature of the quotient group is
elusive. It turns out that Rn/Zn can be viewed as an n-dimensional torus, which acquires
a group law when we make this identification. For instance when n = 2, forming the
quotient space R2/Z2 amounts to identifying points on opposite edges of the unit square
[0, 1]× [0, 1] in R2, which in a certain sense is equivalent to making a donut-shaped torus.
We omit these details.
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It is not always easy to tell when two groups are isomorphic, especially when one of
them is something as abstract as a quotient group. The next examples illustrates the
sort of cunning that might be required to produce the necessary isomorphism map. We
start with an easy one.

*3.3.9 Example. In Example 3.2.8 we defined a surjective homomorphism ψ : Z → Ωn

ψ(k) = ωk = e2πik/n where ω = e2πi/n (the primitive nth root of unity)

Its kernel was the subgroup H = nZ = {nj : j ∈ Z} in Z. Now consider the quotient
group Z/H = Z/(nZ). The group operation (22) in Z/H takes the form

(x+H) + (y +H) = (x+ y) +H

The quotient homomorphism π : Z → Z/(nZ) obviously has the same kernel ker(π) =
H = nZ as ψ; both π and ψ are constant on cosets k+nZ. Following the ideas laid out in
Example 3.3.3, this is all you need to construct an explicit isomorphism ψ̃ : Z/H → Ωn

by taking ψ̃(k + H) = ψ̃(k + nZ) = ωk. It follows that Z/H = Z/(nZ) = (Zn,+) is
isomorphic to the group (Ωn, · ) of nth roots of unity in C. �

3.3.10 Example. Let G be the set C× = {z ∈ C : z 6= 0} of nonzero complex numbers,
equipped with multiplication as the group operation. Within this abelian group we
have the two-element normal subgroup N = {+1,−1}, which is obviously isomorphic
to (Z2,+). Since a coset has the form zN = {z,−z}, the quotient G/N is obtained by
lumping together each pair of points +z,−z in C× to get a single element of the quotient
group.

What is the nature of this quotient group? In particular,

Is G/N isomorphic to the original group C×, or have we created something

new?

It turns out that G/N is isomorphic to (C×, · ); proving it is the challenge. The first step
in mimicing the construction in 3.3.3 is to notice that there is a natural 2:1 homomor-
phism on C× whose kernel is also N = {±1}, namely the “squaring map” φ : C× → C×

given by φ(z) = z2. As we saw in 3.2.1(e), this map is a homomorphism because C× is
abelian; furthermore, it is surjective and is exactly two-to-one because every nonzero
complex number w has precisely two square roots, which lie in C×. The kernel is
N = kerφ = {±1}. Notice what happens when we regard a coset zN = {±z} as a
subset of C× and take the forward image φ(zN): each coset collapses to a single point
z2.

This suggests the following ad-hoc construction of a natural surjective map Φ :
G/N → C×. Guided by 3.3.3 (taking the squaring map in place of the exponential
map used there), we define

Φ(zN) = φ(z) = z2

which makes sense because φ is constant on cosets zN = {z,−z}. Furthermore Φ is
surjective because any complex number z 6= 0 has two square roots in C×. Φ is also one-
to-one, hence a bijection, because Φ(zN) = Φ(wN) ⇔ z2 = w2 ⇔ w = ±z ⇔ zN = wN .
To show G/N ∼= C× it remains only to check whether Φ is a homomorphism. That is a
routine calculation:

Φ(zN · wN) = Φ(zwN) = (zw)2 = z2w2 = Φ(zN) · Φ(wN) �

In all these examples G was abelian. We now prove a much more comprehensive result,

valid whether or not G is commutative.
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Isomorphism Theorems for Quotient Groups. The isomorphisms in the last exam-
ples were all constructed “by hand.” We now develop the basic machinery for deciding
when quotient groups are isomorphic, so we won’t have to re-invent the wheel every time
we come to a new example. We start by clarifying the connection between homomor-
phisms φ : G→ G′ and normal subgroups in G.

3.3.11 Lemma. A subgroup N in a group G is normal if and only if N is the kernel

kerφ = {x ∈ G : φ(x) = e′} for some homomorphism φ : G→ G′.

Proof: Given φ, its kernel N is normal because

φ(xnx−1) = φ(x)φ(n)φ(x−1) = φ(x)e′φ(x)−1 = e′

for any x ∈ G,n ∈ N . Conversely, if N is a normal subgroup the quotient map
π : G→ G/N is a homomorphism whose kernel is N . �

The mapping properties of any homomorphism are determined by the nature of its
kernel. Our initial discussion of homomorphisms in 3.2.5 showed that

(23)

If φ : G→ G′ is a homomorphism, with kernel K = kerφ = {x ∈ G : φ(x) = e′},
then

(a) Each coset xK gets mapped to a single point in G′ under φ.

(b) Distinct cosets xK 6= x′K are disjoint in G and get mapped to different

points φ(x) 6= φ(x′) in G′

A homomorphism φ is one-to-one, and hence an isomorphism from G to the

subgroup φ(G) = range(φ) in G′, if and only if its kernel is trivial: kerφ = (e).

(recall Figure 3.2). Furthermore any homomorphism φ : G → G′ is completely deter-
mined by its behavior on a set of generators of G, as explained in 3.2.17.

We now come to the First Isomorphism Theorem for
quotient groups (there are two more). Let φ : G → G′ be
a homomorphism and let K = kerφ. Obviously we could
regard φ as a surjective homomorphism from G to the sub-
group R = range(φ) ⊆ G′. Now consider the quotient map
π : G → G/K (see Figure 3.5 at right). By definition of
π we have kerφ = kerπ = K. We claim that φ induces
a natural isomorphism φ̃ from G/K to R = range(φ) that
makes this diagram commute, in the sense that φ̃ ◦ π = φ.
This is often expressed by saying that the original homo-
morphism φ “factors through” the quotient map π to give
the induced map φ̃.

G
φ

−→ R ⊆ G′

π ↓ ր

G/K φ̃

Figure 3.5. Here we have

R = range(φ), K = ker(φ).

3.3.12 Theorem (First Isomorphism Theorem). Let φ : G → G′ be a homomor-

phism, let K = ker(φ), and let π : G→ G/K be the quotient homomorphism. There is a

unique map φ̃ : G/K → R = range(φ) that makes the diagram in Figure 3.5 commute:

φ̃ ◦ π = φ. This map is a group homomorphism and is bijective, so it is an isomorphism

from the quotient group G/K to R = range(φ). In particular, when φ is surjective we

have G′ ∼= G/K.

Proof: We know that K is normal in G, so G/K is a group, etc. Following the ideas
laid down in Example 3.3.3, we try defining the missing map φ̃ as

(24) φ̃(xK) = φ(x) for all x ∈ G .
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This map is well defined because φ : G → G/K is constant on cosets xK. In fact, if
y ∈ xK there is some k ∈ K such that y = xk, and then

φ(y) = φ(xk) = φ(x)φ(k) = φ(x)e′ = φ(x)

Thus the outcome in (24) is independent of the coset representative.
Once we know φ̃ is well defined, it is a homomorphism because K is normal and

φ̃(xK · yK) = φ̃(xyK) = φ(xy) = φ(x) · φ(y) = φ̃(xK) · φ̃(yK)

Commutativity of the diagram is automatic from definition (24). Then φ̃ is one-to-one
because, by definition of K = kerφ,

φ̃(xK) = φ̃(yK) ⇒ φ(x) = φ(y) ⇒ φ(y−1x) = φ(y)−1φ(x) = e′

⇒ y−1x ∈ K ⇒ y−1xK = K ⇒ xK = yK

Furthermore, φ̃ maps G/K onto the range R because φ = φ̃ ◦ π; this will make φ an
isomorphism between the groups. In fact, if r ∈ R then r = φ(x) for some x ∈ G, and
then π(x) = xK gives φ̃(xK) = φ(x) = r, making φ̃ surjective. �

In 3.3.12 a homomorphism φ : G→ G′ was given and K was its kernel; if φ is surjective
we proved that G/K ∼= G′. In applying the First Isomorphism Theorem we often take
a different point of view, in which some normal subgroup K is given and we want to
identify the abstract quotient group G/K with some known group G′. Using 3.3.12 we
can conclude that G/K ∼= G′

provided we can find some surjective homomorphism φ : G→ G′ whose kernel

is the same as K, so ker(φ) = K and φ is constant on cosets xK.

The problem now is to find a suitable homorphism φ once K has been specified. This
is what we did in Example 3.3.10 where G = C× and the specified normal subgroup
was N = {±1}. There the “squaring map” φ(z) = z2 was a surjective homomorphism
φ : C× → C× such that ker(φ) = N = {±1}, allowing us to conclude that G/N ∼= C×.
�

3.3.13 Example. Let G be the matrix group GL(n,C) of all n × n matrices A with
complex entries and det(A) 6= 0. This is a group under matrix multiplication, and so
is the subgroup N = SL(n,C) of matrices with determinant +1. We claim that N is
normal in G, and that the quotient group G/N is isomorphic to the group (C×, · ) of
nonzero complex numbers under multiplication.

Discussion: Normality of N follows because the determinant has the properties

det I = 1 det(AB) = det(A) · det(B) det(A−1) =
1

det(A)

If A ∈ G and B ∈ N we get det(ABA−1) = det(A)det(B)det(A)−1 = det(B) = 1, which
shows that ANA−1 ⊆ N for all A ∈ G. Thus N is normal.

The determinant map φ(A) = detA is a natural homomorphism φ : GL(n,C) → C×.
It is a group homomorphism because the determinant is multiplicative, and it is surjective
because if λ 6= 0 in C the diagonal matrix D = diag(λ1/n, . . . , λ1/n) has detD = λ. (Here
λ1/n is any complex nth root of λ; for instance if λ has polar form λ = reiθ we can take
the principal nth root λ1/n = r1/neiθ/n where r1/n is the usual nth root of a non-negative
real number.)

The kernel of φ is precisely N = SL(n,C), by definition of SL(n,C). The conditions
of the First Isomorphism Theorem are fulfilled. We conclude that GL(n,C)/SL(n,C) ∼=
(C×, · ) as claimed. �

*3.3.14 Exercise (Second Isomorphism Theorem). Let A be any subgroup in G
and let N be a normal subgroup. Show that
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Figure 3.6. Points on a torus X can be located by specifying two angle variables. Thus
X can be regarded as the Cartesian product S1 × S1 of two circles.

(a) The product set AN is a subgroup in G, with N ⊳AN .

(b) A ∩N is a normal subgroup in A.

(c) AN/N ∼= A/(A ∩N)

Hint: In (c) consider the map ψ : A/(A ∩ N) → AN/N given by ψ(a(A ∩ N)) = aN
for a ∈ A. Start by showing this map is well-defined: if a(A ∩ N) = a′(A ∩ N) then
aN = a′N �

3.3.15 Exercise (Third Isomorphism Theorem). Let G ⊇ A ⊇ B be groups such
that A and B are both normal subgroups in G. Prove that (G/B)/(A/B) ∼= G/A.
Note: This is the group-theory analog of the arithmetic relation (a/c)/(b/c) = a/b. �

3.3.16 Exercise. Let N = Ωn be the group of nth roots of unity in G = (C×,+). Use
3.3.12 to prove that G/N = C×/Ωn is isomorphic to (C×, · ) for all n = 1, 2, . . . . �

*3.3.16A Exercise. The torus group S1 × S1 is the Cartesian product of circles

S1 × S1 = {z = (z1, z2) : z1, z2 ∈ C and |z1| = |z2| = 1}

equipped with multiplication operation

z ·w = (z1w1 , z2w2)

(see Figure 3.6).

(a) Show that (S1×S1, · ) is a commutative group. What is its identity element?

(b) Prove that the quotient group (R2/Z2,+) is isomorphic to the torus group
(S1 × S1, · ).

Hints: Recall the discussion for R/Z ∼= S1; use the First Isomorphism Theorem. �

3.3.17 Exercise. If G is a cyclic group (finite or not) and N is any normal subgroup,
prove that the quotient group G/N is cyclic.
Note: We have shown that any subgroup of a cyclic group is cyclic; the present result is
the analogous result for quotients. �

3.3.18 Exercise. If G = (Zn,+) and d is a divisor of n, we have shown that there is
a subgroup Hd ⊆ Zn such that |Hd| = d, and we will soon prove that there is exactly

one such subgroup for each divisor. Explain why the quotient group (Zn/Hd,+) must
be isomorphic to (Zn/d,+).
Hint: By 3.3.17, the quotient is cyclic. What is its cardinality?
Note: Since Hd

∼= Zd, this result says that (Zn)/(Zd) ∼= Zn/d for any divisor of n. �

*3.3.19 Exercise. Use 3.3.12 to prove the following useful variant of the First Isomor-
phism Theorem.
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Proposition. If G,G1, G2 are groups and φi : G→ Gi are surjective homo-

morphisms with the same kernel K = ker(φ1) = ker(φ2), then G1
∼= G2.

Hint: Prove G1
∼= G/K ∼= G2. �

3.3.20 Exercise. In GL(n,C) and SL(n,C) define the subgroups of scalar matrices

C×I = {λI : λ 6= 0 in C} ΩnI = {λI : λ ∈ Ωn}

where Ωn are the complex nth roots of unity.

(a) Prove that C×I and ΩnI are normal in GL(n,C) and SL(n,C) respectively.

(b) Prove that GL(n,C)/C×I ∼= SL(n,C)/ΩnI

Hint: Use the Second Isomorphism Theorem. If N = C×I show that N · SL(n,C) =
GL(n,C). �

The quotient group PSL(n,C) = SL(n,C)/ΩnI is the “projective special linear group”
(hence the symbol “PSL”), a group that plays a crucial role in projective geometry. One
can prove that this quotient is not isomorphic to SL(n,C) for n ≥ 2. For one thing, we
will eventually see that the center of SL(n,C) is precisely the set of scalar matrices Ωn ·I,
and is nontrivial; PSL(n,C) has trivial center and cannot be isomorphic to any group
with nontrivial center. A deeper result asserts that PSL(n,C) is not isomorphic to any

group of matrices G ⊆ GL(m,C), m ∈ N, even though it is a quotient of a matrix group.

Section 3.3: Additional Exercises

In the next questions the index [G : H ] of a subgroup H in G is the number of xH-cosets
|G/H |, which may be finite even if G,H are infinite. It is convenient to label them as
H = eH, a2H, . . . , anH (ai ∈ G) when the index is finite.

3.3.21 Exercise. If H is a subgroup of a group G, prove that the intersection

N =
⋂

x∈G

xHx−1

is a subgroup and that aNa−1 = N for all a ∈ G, so it is normal in G.
Note: N is the largest normal subgroup in G contained in H ; it might be trivial. �

3.3.22 Exercise. If H is a subgroup of finite index in a group G, prove that there are
only finitely many distinct “conjugate” subgroups aHa−1 for a ∈ G. �

3.3.23 Exercise. If H is a subgroup of finite index in a group G, prove that there is a
subgroup M ⊆ H such that (i) M has finite index in G, and (ii) M is normal in G, so
aMa−1 = M for all a ∈ G.
Note: We do not assume G and H are finite. �

3.3.24 Exercise. Let G = (R×, · ) be the multiplicative group of nonzero real numbers,
and let N be the subgroup consisting of the numbers ±1. Let G′ = (0,+∞) equipped
with multiplication as its group operation. Prove that N is normal in G and that G/N ∼=
G′ ∼= (R,+). �

3.3.25 Exercise. If G is a group and H a subgroup such that |G/H | = 2, prove that H
must be a normal subgroup.
Hint: There are just two cosets, H and xH . How are H,xH , and Hx related? �

3.3.26 Exercise. If H is a subgroup in G and N is a normal subgroup in G, prove that
N ∩ H is normal in H . In particular an intersection N1 ∩ N2 of normal subgroups is
normal. �

3.3.27 Exercise. If H is a subgroup of G, its normalizer is NG(H) = {g : gHg−1 = H}.
Prove that
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(a) NG(H) is a subgroup.

(b) H is a normal subgroup in NG(H).

(c) If H ⊆ K ⊆ G are subgroups such that H is a normal subgroup in K, prove
that K is contained in the normalizer NG(H).

(d) A subgroup H is normal in G⇔ NG(H) = G.

Note: Part (c) shows that NG(H) is the largest subgroup of G in which H is normal. �

*3.3.28 Exercise. If x, y ∈ G, products of the form [x, y] = xyx−1y−1 are called
commutators and the subgroup they generate

[G,G] = 〈 xyx−1y−1 : x, y ∈ G 〉

is the commutator subgroup of G. Prove that

(a) The subgroup [G,G] is normal in G.

(b) The quotient G/[G,G] is abelian.

(c) H = [G,G] is the smallest normal subgroup such that G/H is abelian.

Hint: In (a) recall that a subgroup H is normal if αg(H) = gHg−1 ⊆ H for all g ∈ G.
What do conjugations αg do to the generators [x, y] of the commutator subgroup? �

3.3.29 Exercise. For a, b real with a 6= 0 define the operators τa,b : R → R via
τa,b(x) = ax+b. Let G be the group of operators {τa,b : a, b ∈ R, a 6= 0} with composition
(◦) as the group operation. Prove that

(a) The set of translations N = {τ1,b : b ∈ R} is a normal subgroup in G.

(b) The set of scaling operations H = {τa,0 : a 6= 0 in R} is a subgroup but is not
normal.

(c) Every element g ∈ G has a unique factorization g = nh with n ∈ N, h ∈ H

(d) The quotient G/N is isomorphic to the group of nonzero real numbers R×

under multiplication. �

3.3.30 Exercise. Let G be the group C× of all nonzero complex numbers under multi-
plication. Let G′ be the group of real 2 × 2 matrices

(

a b
−b a

)

with a, b,∈ R and a2 + b2 6= 0 ,

with matrix multiply as the operation in G′. Verify that these matrices form a group
and prove that G ∼= G′ by exhibiting an explicit isomorphism φ : G→ G′. �

3.3.31 Exercise. Let G be the group of all real 2 × 2 matrices of the form

(

a b
0 d

)

such that ad 6= 0 .

Show that the commutator subgroup [G,G] defined in Exercise 3.3.28 is precisely the
subset of matrices in G with 1’s on the diagonal and an arbitrary entry in the upper
right corner. �

3.4 Basic Counting Principles in Group Theory.
We now examine some basic counting principles in group theory. The following funda-
mental result places severe constraints on the possible pattern of subgroups in a group
of finite order |G| = n, in terms of the divisors of n.
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3.4.1 Theorem (Lagrange). If G is a group of finite order |G| = n and H is a

subgroup, then |H | must divide |G|. In fact, we have

(25) |G| = |G/H | · |H |

so the number of left cosets in G/H also divides |G|.

Proof: Any left translation τx : G→ G, with τx(g) = xg, is easily seen to be a bijection;
for one thing, the operator τx−1 is its inverse because

τx ◦ τx−1(g) = x·x−1 ·g = g for all g ∈ G

That means all left H-cosets have the same cardinality: |xH | = |τx(H)| = |H |. We
proved earlier that G is a disjoint union of its distinct left H-cosets so we get

|G| = #(H-cosets) · (size of each coset) = |G/H | · |H |

as claimed. �

3.4.2 Corollary. If G is a finite group and a ∈ G then the order o(a) of this element

must divide |G|.

Proof: If o(a) = k that means {e, a, a2, . . . , ak−1} are distinct and ak = e. The cyclic
group H = 〈a〉 has order k, which must divide |G|. �

3.4.3 Corollary. If a group G has finite order |G| = n then an = e for all elements

a ∈ G.

Proof: We know that the order k = o(a) of a group element divides the order of the
group. Thus n = km and

an = (ak)m = em = e

as claimed. �

As an example of what can be done with this theorem, consider the cyclic group
G = Z/(7Z) = Z7 of (mod 7) congruence classes, with (+) as the group operation. The
order of this group is a prime p = 7; by Lagrange, G cannot contain any subgroups other
than H = {e} and H = G. By the same reasoning, applied to any prime p > 1, we
obtain our first general structure theorem for finite groups

3.4.4 Corollary. If G is a finite group whose order is a prime |G| = p > 1, then G = 〈a〉
for every element a 6= e and G ∼= (Zp,+). In particular, every finite group of prime order

is cyclic, abelian.

3.4.5 Exercise. If an element x in a group satisfies xm = e for some integer m ∈ N,
prove that m must be a multiple of the order o(x) of that element. �

*3.4.6 Exercise. By Lagrange, the cyclic abelian group G = (Z12,+) could have
subgroups of order |H | = 1, 2, 3, 4, 6, 12. By 3.1.30 we know that all subgroups of a cyclic
group are themselves cyclic, so there is a subgroup with one of these orders if and only
if there exist elements in G of order o(a) = 1, 2, 3, 4, 6, 12.

(a) What is the size of the cyclic subgroup generated by a = [2]?

(b) Which of the possible orders of elements in this group actually occur?

(c) We know that a = [1] is a cyclic generator of the whole group under the (+)
operation. Identify all other elements a such that G = 〈a〉. �

Note the contrast: when |G| is a prime, as with Z7, every element a 6= e is a cyclic
generator; this is no longer true in Zn if n has proper divisors.
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*3.4.7 Exercise. In (Zn,+, · ) the group of units Un is the set of elements [k] ∈ Zn that
have a multiplicative inverse: there exists an [ℓ] such that [k][ℓ] = [1].

(a) Explain why the set of units (Un, · ), equipped with multiplication [j] · [k] =
[jk] as its operation, is always a group.

Now consider the particular group (Z12,+).

(b) Identify the set of units U12.

(c) What is the order of the multiplicative group (U12, · )? Is this abelian group
cyclic?

(d) Can you list all the subgroups of (U12, · )?

Hint: What is the maximal order of any element g ∈ U12? �

*3.4.7A Exercise. If G is a group that has no proper subgroups (H 6= (e) and H 6= G)
prove that

(a) G must be cyclic and finite.

(b) Either G is trivial or G ∼= (Zp,+) for some prime p > 1.

Note: We do not assume G is finite. Use Lagrange in (b). �

Earlier we showed that the additive group (Zn,+), the exemplar of all cyclic groups of
order |G| = n, must have subgroups Hd of order d for every divisor d|n, 1 ≤ d ≤ n. By
3.1.36 all subgroups of Zn are cyclic. Using Lagrange we now prove the definitive result
regarding subgroups of Zn (or any finite cyclic group).

3.4.8 Theorem. In (Zn,+), for every divisor d of n, (1 ≤ d ≤ n) there is a unique

(cyclic) subgroup Hd such that |Hd| = d

Proof: For existence we may take Hd = 〈[n/d]〉. This makes sense because n/d is an
integer, and the element x = [n/d] has order d because the elements

0 <
n

d
< 2 ·

n

d
< . . . < (d− 1) ·

n

d
< n

are distinct, with d · [n/d] = [0]. Thus |Hd| = d.
For uniqueness, suppose there were two subgroups A,B of order d. Since Zn is abelian

it is easy to see that the “product set” (written in additive notation)

A+B = {x+ y : x ∈ A, y ∈ B}

is a subgroup in Zn. All subgroups of Zn are cyclic, so there is a y such that A+B = 〈y〉
and o(y) = |A + B| ≥ |A| = d. On the other hand we must have y = a + b and then
d ·y = (d ·a)+(d ·b) = 0+0 = 0, which forces o(y) ≤ d. Thus o(y) = d, |A+B| = |A| = d,
and we must have A = B = A+B, as required to prove uniqueness. �

We now turn to a more sophisticated counting principle for groups. If A,B are subsets
of (G, · ), the product set AB is {ab : a ∈ A, b ∈ B}. Unless G is abelian, we might not
have AB = BA; in any case we have a crude estimate for the size of this set, namely
|AB| ≤ |A| · |B|. (Why?) Unfortunately, that’s not good enough – there could be many
pairs for which ab = a′b′, so |AB| could be a lot smaller than this upper bound.

Suppose A and B are subgroups. The product set AB need not be a subgroup, though
it often is. The next result tells us when this happens, and also tells us how to calculate
|AB| whether or not AB is a subgroup.

3.4.9 Theorem (A Counting Principle). Let G be a group and A,B subgroups. Then
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(a) The product set AB is a subgroup ⇔ AB = BA.

(b) Whether or not AB is a subgroup, we always have

(26) |AB| =
|A| · |B|

|A ∩B|

Proof: Write A−1 = {a−1 : a ∈ A} for any subset A ⊆ G; obviously A−1 = A if A is a
subgroup. To prove (⇒) in part (a): if AB is a subgroup we have

AB = (AB)−1 = {(ab)−1 = b−1a−1 : a ∈ A, b ∈ B} = B−1A−1 = BA

because A and B are subgroups. To prove (⇐) let a, a1 ∈ A and b, b1 ∈ B, and assume
AB = BA. Then we may rewrite ba1 = a′b′, and hence may rewrite the product of two
elements ab, a1b1 in the product set AB as follows

(ab)(a1b1) = a(ba1)b1 = a(a′b′)b1 = (aa′)(b′b1) ∈ AB

Thus the set AB is closed under formation of products. Obviously the identity element
e = ee is in AB, and if ab ∈ AB its inverse is also in AB because (ab)−1 = b−1a−1 ∈
BA = AB. Thus AB is a subgroup.

As for the counting formula, one might get an idea how to procede by starting with
the special case A ∩ B = (e). In general, we look at the map ρ : A × B → AB ⊆ G
defined by setting ρ(a, b) = ab, and ask:

Question: For how many pairs (a, b) in the Cartesian product set A×B do

the group elements ρ(a, b) = ab take on the same value?

Consider a1, a2 ∈ A and b1, b2 ∈ B; clearly a1b1 = a2b2 ⇔ a−1
2 a1 = b2b

−1
1 . But then the

common value x = a−1
2 a1 = b2b

−1
1 is an element of A ∩B, and we have

(27) a2 = a1x
−1 and b2 = xb1 for some element x ∈ A ∩B .

Existence of an x ∈ A ∩ B such that (27) holds is a necessary condition in order that
a1b1 = a2b2. It is also sufficient, because if (27) holds we have

a2 = a1x
−1 ∈ A and b2 = xb1 ∈ B (true for any x ∈ A ∩B)

a2b2 = a1x
−1xb1 = a1b1

Finally, (ax−1, xb) = (ay−1, yb) in the Cartesian product for x, y ∈ A ∩ B ⇔ x = y,
so there is a one-to-one match between pairs (a′, b′) such that a′b′ = ab and elements
x ∈ A ∩B.

We conclude that for any point g ∈ AB the number of pairs such that ρ(a, b) = g
is equal to the number of points x ∈ A ∩ B; furthermore, this is true no matter which
point g in the set AB we look at. Put another way, given one pair (a0, b0) such that
ρ(a0, b0) = g, the other pairs with the same image are {(a0x

−1, xb0) : x ∈ A ∩ B}, and
there are precisely |A ∩B| such pairs, a distinct pair for each x.

Thus the Cartesian product set A×B, which has size |A| · |B|, gets partitioned into
disjoint “clumps” which correspond one-to-one with the distinct image points in the
product set AB under ρ. Since

|A×B| = #(“clumps”) · #(points per “clump”)

= #(image points in AB) · |A ∩B|

= |AB| · |A ∩B|

we arrive at |A| · |B| = |A×B| = |AB| · |A ∩B|. �
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3.5. Automorphisms and Inner Automorphisms.
An automorphism of a group is an isomorphism from G to itself. These maps may
be regarded as the “self-symmetries” of the group, and are important in understand-
ing the structure of G. The set Aut(G) of all automorphisms becomes a group if we
take composition of operators (◦) as the product operation; the verification is routine.
Aut(G) always includes the trivial automorphism id

G
; it also includes a special set of

automorphisms – the inner automorphisms Int(G) – which are obtained by letting G
act on itself by conjugation. Just as in linear algebra, we say that one element y is a
conjugate of another element x if there is some g ∈ G such that y = gxg−1. Focusing
on the conjugation operators αg(x) = gxg−1 we note the following easily verified facts.

*3.5.1 Exercise. Let G be any group and let Int(G) be the set of conjugation operations
αg(x) = gxg−1 on G. Prove that

(a) Each map αg is a homomorphism from G→ G.

(b) Each map αg is a bijection, hence an automorphism in Aut(G).

(c) αe = id
G
, the identity map on G.

(d) αxy = αx ◦ αy for all x, y ∈ G.

(e) αx−1 = (αx)−1 (set-theoretic inverse map for the bijection αx)

It follows that (Int(G), ◦) is a group under composition of operators, and the inner
automorphisms Int(G) = {αg : g ∈ G} are a subgroup of Aut(G).

(f) Prove that Int(G) is normal in Aut(G). �.

The subgroup Int(G) is trivial if G is abelian, and so is the conjugation process: in
an abelian group y is conjugate to x if and only if y = x. But in such groups there might
be plenty of “outer” automorphisms lying in Aut(G) ∼ Int(G). Finding these “outer”
automorphisms is an interesting problem. Here are a few examples.

3.5.2 Example. Let G = (Z,+). To determine Aut(G) we note that automorphisms
are homomorphisms, and are determined by what they do to a set of generators. But Z is
cyclic, with generator x = 1 under the (+) operation, so suppose φ is a homomorphism
that sends 1 to k. Writing (+) for the group operation we must then have φ(m) =
φ(1 + 1 + . . . + 1) = φ(1) + φ(1) + . . . + φ(1) = km, at least for m ≥ 0; but this is
easily seen to be true for all m ∈ Z, and φ = φk is completely determined: it is just the
“additive kth power map” φk(m) = k ·m for m ∈ Z. We have determined all possible
homomorphisms φ : Z → Z. The maps φk are distinct since φk(1) = k, and every
automorphisms of Z must appear within the list {φk : k ∈ Z}.

Which of the φk are bijections? Clearly φ1 = id
G

and φ−1 = −id
G

(the inversion

map) are bijections, hence automorphisms. If k = 0, φ0 is the zero map and is not
one-to-one; we leave the reader to verify that φk cannot be surjective if k 6= −1, 0, 1.
Thus we have determined Aut(Z,+) = {id

G
,−id

G
}. Since there are only two elements,

this group is abelian and isomorphic to (Z2,+). Obviously Int(Z) is trivial. �

3.5.3 Theorem. Let G = (Zn,+), the group of (mod n) congruence classes in Z. Then

(28) (Aut(Zn,+), ◦) is isomorphic to the group of units (Un, · )

where Un = {[k] ∈ Zn : 1 ≤ k ≤ n − 1 and gcd(k, n) = 1} is the group of units in

(Zn,+, · ), the elements with multiplicative inverses. The group law in Un is multiplica-

tion, not addition, and in Aut(Zn) it is composition of mappings of G.

Proof: The group G = Zn is cyclic, with [1] as a generator under the (+) operation.
As in Example 3.5.2, a homomorphism φ : G→ G is determined by what it does to this
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generator, and we can try all the possible assignments φk([1]) = [k], 0 ≤ k ≤ n − 1. In
3.2.1(e) we found that the homomorphisms of (Zn,+) are precisely the maps

φk([m]) = k·[m] = [km] = [k]·[m] for 0 ≤ k ≤ n− 1

This formula shows that the map φk depends only on the (mod n) conjugacy class [k] of
k. The φk, 0 ≤ k < n, are a complete list of the homomorphisms from Zn to Zn.

To be an automorphism φk must be bijective, but since Zn is a finite set that will
happen ⇔ φk is one-to-one ⇔ φk is onto. We claim that φk is onto precisely when
gcd(k, n) = 1. In fact, if φk is surjective there is some [ℓ] such that [k][ℓ] = [1], which
means [k] ∈ Un with [k]−1 = [ℓ], and hence that k is relatively prime to n. Conversely, if
[k] ∈ Un and if [m] is any element in Zn, we may write [m] = [k]·[k]−1[m] = φk([k]−1[m]),
and so φk is surjective. That proves our claim.

We have shown that the elements in Aut(Zn,+) correspond one-to-one with the
classes in Un under the correspondence Φ : Un → Aut(Zn,+) that sends [k] to Φ([k]) =
φk. The preceding remarks show that this makes sense independent of the representative
of the congruence class [k], and that Φ is a bijection. It is also a homomorphism from
(Um, · ) to (Aut(Zn,+), ◦). In fact, we have

φ[ℓ][m]([k]) = [ℓ]·[m]·[k] = φ[ℓ] ◦ φ[m]([k])

which means that Φ([ℓ][m]) = Φ([ℓ]) ◦Φ([m]) for all [ℓ], [m] ∈ Zn. Thus Φ is a homomor-
phism, and hence an isomorphism, from Un equipped with the (·) operation to Aut(G)
equipped with (◦). �

We noted earlier that every cyclic group of finite order |G| = n is isomorphic to (Zn,+),
so we have actually determined the automorphisms of all cyclic groups. Writing the
group law as multiplication rather than (+), the homomorphisms of G are the distinct
multiplicative kth power maps φk(a) = ak for 0 ≤ k ≤ n − 1; the automorphisms are
obtained by requiring that gcd(k, n) = 1.

We close this section with an example illustrating the interplay between automor-
phisms and quotient groups.

3.5.4 Definition. The center of a group G is the set of elements a ∈ G that commute

with everbody in G:

(29) Z(G) = {a ∈ G : ga = ag, ∀ g ∈ G} = {a ∈ G : gag−1 = a, ∀ g ∈ G}

The center is a subgroup. It is also normal because if a ∈ Z(G) and b ∈ G we get

g(bab−1)g−1 = (gb)a(gb)−1 = a for all b, g ∈ G ,

and hence bab−1 is again in Z(G) if a ∈ Z(G). Thus bZ(G)b−1 ⊆ Z(G) for all b ∈ G and
Z(G) ⊳G. For abelian groups the center is all of G.

The center becomes relevant in understanding automorphisms because a conjugation
operation αa(x) = axa−1 is trivial (with αa = id

G
) if and only if axa−1 = x for all x,

which means precisely that a ∈ Z(G).
Now consider Φ : G → Int(G) ⊆ Aut(G) given by Φ(g) = the inner automorphism

αg. This map is a homomorphism because

Φ(e) = id
G

and Φ(xy) = αxy = αx ◦ αy = Φ(x) ◦ Φ(y)

Its range is Int(G) by definition of inner automorphisms. The kernel is just the center
Z(G):

kerΦ = {g : αg = id
G
} = {g : gxg−1 = x, ∀x ∈ G} = Z(G)
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Applying the First Isomorphism Theorem 3.3.12 we ob-
tain the commutative diagram shown in Figure 3.7. The
induced diagonal map Φ̃ is a bijective map to range(Φ) =
Int(G), and is a homomorphism; hence we have an isomor-
phism of groups Int(G) ∼= G/Z(G).

We summarize this as follows:

G
Φ

−→ Int(G) ⊆ Aut(G)
π ↓ ր

G/Z(G) Φ̃

Figure 3.7.

3.5.5 Theorem. For any group G we have Int(G) ∼= G/Z(G) where Z(G) is the center

of G.

3.5.6 Exercise. Verify the properties (i) αe = id
G
, (ii) αxy = αx ◦ αy, and (iii)

αx−1 = (αx)−1 for all x, y ∈ G. �

3.5.7 Exercise. If G is a group and N a normal subgroup, we may restrict any in-
ner automorphism αx : G → G to N . Normality means N is invariant under inner
automorphisms, so we get an automorphism αx|N ∈ Aut(N)

(αx|N)(n) = αx(n) = xnx−1 for all n ∈ N

Now consider the restriction map R : (Int(G), ◦) → (Aut(N), ◦) which takes an inner
automorphism αx of G to its restriction R(αx) = αx|N . Verify that the restriction map
is a homomorphism R : Int(G) → Aut(N).
Note: Arbitrary automorphisms β ∈ Aut(G) need not leave a normal subgroup invariant,
so we cannot expect the restriction β|N to be an automorphism of N . Furthermore, the
restriction αx|N of an inner automorphism αx on G need not be an inner automorphism
of N – i.e. there might not be any y ∈ N such that αx(n) = yny−1 for all n ∈ N . �

*3.5.8 Exercise. Show that the group Int(G) of inner automorphisms is a normal

subgroup in Aut(G).
Note: The quotient Aut(G)/Int(G) is regarded as the group of outer automorphisms

Out(G). �

Section 3.5: Additional Exercises

3.5.9 Exercise. Are the following maps φ : G → G automorphisms of their respective
groups? Explain.

(a) G = (Z,+); φ(x) = −x for all x.

(b) G = the positive real numbers (0,∞) with multiplication; φ(x) = x2.

(c) G = a cyclic group of order 12; φ(x) = x3.

(d) G = the permutation group S3; φ(x) = x−1 for all x. �

3.5.10 Exercise. The permutation group G = S3 on three objects has 6 = 3! elements

S3 = {e, (12), (23), (13), (123), (132)}

Prove by direct calculation that G ∼= Int(G) – i.e. prove the center of S3 is trivial. �

*3.5.11 Exercise. Let G = {e, a, b, c} be the group of order 4 such that a2 = b2 = e
and c = ab = ba.

(a) Make a multiplication table and verify that: (i) G is abelian, (ii) x2 = e for
all x ∈ G.

(b) Prove that Aut(G) is isomorphic to the permutation group S3.

Hints: (i) To see why automorphisms α might correspond to permutations, ask yourself:
What 3 objects might be permuted by any α ∈ Aut(G)? (ii) To show that a map φ : G→ G
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is a homomorphism you must check that φ(xy) = φ(x)φ(y) for all pairs (x, y). However,
this property is trivial if x = e or y = e, or if x = y (because x2 = e for all x). That
means we only have to check 6 out of the original 16 pairs, and we can eliminate half
of those remaining because G is abelian. So for this group the homomorphism property
can be checked by looking at only three pairs. �

3.5.12 Exercise. A subgroup H in G is said to be a characteristic subgroup if
α(H) = H for all automorphisms α ∈ Aut(G), not just the conjugations αg(x) = gxg−1

as in the definition of a normal subgroup.

(a) Prove that a characteristic subgroup must be normal in G.

(b) Prove that the converse of (a) is false.

Hint: In (b), think: G = (R2,+); then

Aut(G) = all linear operators τA(v) = Av (a (2×2)·(2×1) matrix product),

where A is any 2 × 2 matrix with nonzero determinant. �

3.5.13 Exercise. For any group G prove that the commutator subgroup [G,G] defined
in Exercise 3.3.28 is a characteristic subgroup, as defined in 3.5.12.
Hint: What does an automorphism do to the generators of [G,G]?
Note: This example shows that if G is abelian its automorphism gorup may nevertheless
be noncommuative (while Int(G) is trivial). �

3.5.14 Exercise. Let G be a group and Z(G) its center. If α is any automorphism of G
prove that α(Z(G)) = Z(G), so the center of any group is a characteristic subgroup. �

3.5.15 Exercise. Since p = 7 is a prime the group of units in the ring (Z7,+, · ) is

U7 = Z×

7 = {[k] ∈ Z7 : [k] 6= [0]}

so |U7| = 6.

(a) Show that (U7, · ) is cyclic by directly calculating the orders of each of its ele-
ments.

(b) If n ∈ N and [k] is a cyclic generator for (Un, · ) is −[k] = [−1]·[k] = [−k] always
a cyclic generator? Explain. �

Later on we will prove that (Up, · ) is always cyclic if p > 1 is a prime. Since |Up| =
|Z×

p | = p − 1 this will imply that (Up, · ) ∼= (Zp−1,+). Combining this with (28) we
conclude that

(30) (Aut(Zp,+), ◦) ∼= (Up, · ) ∼= (Zp−1,+)

for primes p > 1.

3.5.16 Exercise. Suppose G is an abelian group and a, b ∈ G have orders m = o(a), n =
o(b)

(a) Explain why the order o(ab) is a divisor of the least common multiple
lcm(o(a), o(b)).

(b) Produce a counterexample showing that o(ab) is not always equal to
lcm(o(a), o(b)).

Hint: Try some elements in Zn for suitably chose n. �

3.5.17 Exercise. If G is a group, Z is its center, and the quotient group G/Z is cyclic,
prove that G must be abelian. �
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